Electromagnétisme
Description d’une distribution de courant

1)  Soit un fil conducteur de géométrie cylindrique, de section
droite S constante, de rayon R, parcouru par un courant
d’électrons d’intensité I constante, positive (avec le fléchage
utilisé) et réparti uniformément sur S. Le mouvement des
charges est dans la direction de I'axe du cylindre.

1) Exprimer la norme du vecteur densité de courant
volumique en fonction de I et R.

ii) Estimer la norme du vecteur densité de courant
volumique dans le cas d’un fil de T.P. traversé par un
courant de 1A et de section S = 1mm?.

ii) Le conducteur utilisé est en cuivre. Le cuivre présente
une conductivité non nulle en proposant I’électron a la
conduction (1 électron libre par atome). Soit p la
masse volumique du cuivre et M., sa masse molaire.
Donner l'expression de la concentration en électrons,
notée n,,, participant a la conduction.

iv) On donne p ~ 10.103kg.m™3, Mg, ~ 60g.mol™* et le
nombre d’Avogadro N, = 6.10%*mol™?, calculer n,,.

v) Des questions précédentes, donner un ordre de
grandeur de la vitesse de dérive des charges dans un
fil conducteur de TP.

2)  Soit un fil conducteur de géométrie cylindrique, de section
droite S constante, de rayon R, parcouru par un courant
d’intensité I > 0 constante réparti non uniformément sur S.
Le vecteur densité volumique de courant est axial et suit la
loi j(r) =j0£ ou j, >0 est une constante. Exprimer I en

fonction de j, et R.

On considére un conducteur électrique, cylindrique, d’axe 0z et
dont les charges mobiles sont des électrons. Leur vitesse initiale
est nulle ; a partir de I'instant t = 0, ils sont soumis 4 un champ
électrostatique uniforme et stationnaire E = Ew,. D’autre part, ils

sont soumis dans le conducteur a une force de frottement f =
m - 7 s .
-<vm étant la masse de I'électron, 7 une constante physique et

¥ est la vitesse commune aux électrons par rapport au
conducteur. On donne m =~ 1073%kg,e ~ 107°C,E ~ 0,1V.m™! et
T~ 107 unité SIL.

1) Quelle est l'origine physique de la force de frottement ?

2)  Obtenir équation différentielle vérifiée par la vitesse v
d’un électron.

3) Donner alors la dimension de 7 et proposer une
interprétation de cette grandeur.

4) Donner également I'expression puis la valeur de la vitesse
limite v; = v(t » ) de I'électron

5) Lorsque le régime permanent est établi, montrer que le
vecteur densité de courant J peut se mettre sous la forme
7=vyE ol y est la conductivité du matériau que lon
cherchera a exprimer en fonction de m,e,7 et mn,
(concentration en électrons participant a la conduction).
Faire 'application numérique pour le cuivre n,, ~ 102°m=3.

6) = yE est appelée loi ’'Ohm locale, chercher a obtenir la
loi d’Ohm « couramment » écrite en électrocinétique pour le
conducteur cylindrique de section S, de longueur [ = AB,
parcourue par un courant uniformément réparti dessiné ci-
dessous et sous une ddp U =V, —Vz. En déduire alors
Texpression de sa résistance R, en fonction de y,l et S.
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7)  Proposer un schéma électrique a la situation ci-dessous et
expliquer la modification possible de I'intensité lumineuse
de la lampe.

8) A partir de la loi d'Ohm locale, déterminer la puissance
volumique P,, échangée par le champ électrique avec le
conducteur en fonction de y et E. Commenter le signe de
cette grandeur énergétique.

Equations de Maxwell

Etablir que, si les lignes de champ magnétostatique sont des
droites paralléles dans une région vide de courant, alors B est
uniforme.

Quelles sont, parmi les configurations suivantes, celles qui
peuvent représenter un champ magnétostatique ? Ou pourraient
étre les courants correspondants ? Le champ est supposé
invariant par translation dans la direction perpendiculaire a la
page.

Pour une certaine distribution de courants d’axe (0z), en
repérage cylindrique (7,6, z), le champ magnétostatique créé en

MestB = Bg(r)eq, avec B, et 1, constantes :

Be(r) = B, (i) pour r <,

Bo(r) = By (%“) pour r > 1,

On donne l'opérateur rotationnel en coordonnées cylindriques

pour un champ de vecteur a:
10a, day
/ rdd 0z \
Tota(M) = | da, _9a, |
0z or
\1 oray, 10a,
r dor r dY

1)  Enoncer I'équation de Maxwell-Ampére.
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2) Analyser la direction et la (ou les) variable(s) dont
dépend vecteur densité de courant j.

3) Donner l'expression du vecteur densité de courant j en
tout point de I'espace en utilisant I'équation de Maxwell-
Ampere. Identifier la distribution de charge.

4) Donner la valeur de l'intensité du courant I traversant
I’ensemble de ce support conducteur.

Théoréeme d’Ampere

a) Champ magnétostatique créé par un fil de rayon R

On considére un fil infini de rayon R, d’axe Oz, parcouru par un
courant d’intensité constante I, uniforme sur toute la section du
fil et compté positivement par le sens de fléchage choisi. Ce
courant a pour origine un déplacement d’électrons dans la méme
direction que l'axe Oz.

tuo

1) Exprimer le vecteur densité de courant volumique J en
fonction de R et I,

2) Faire l'analyse des symétries et invariances de cette
distribution de courant en repérage cylindrique (r, 6, z)
et montrer que le champ magnétostatique est
orthoradial et ne dépend que de r.

3) Expliquer I'expérience photographiée ci-dessous :

4) En déduire que la circulation du champ

magnétostatique gﬁr BdOM est facilement exprimée a
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l'aide d’'un contour (d’Ampére) I circulaire et orienté, de
rayon r, centré autour de 'axe Oz.

5) Chercher & exprimer, en fonction de r,R et I,, le
courant, noté Ipnaq, enlacé par I'sir > R etsir <R.

6) En utilisant le théoréme d’Ampére, donner I'expression
du champ magnétostatique dans le fil et a I'extérieur du
fil.

7)  Compléter le programme PYTHON ci-dessous afin
d’obtenir le tracé de quelques vecteurs champ
magnétique créé par le fil étudié précédemment dans
un plan de cote z donné.

#définition des constantes

mu0=4*np.pi*10**-7

10=1

R=10

#definition des points de mesure
x = np.linspace(-20,20,10)

y = np.linspace(-20,20,10)

X, Y = np.meshgrid(x,y) #géneére le maillage de points associés a
chaque mesure

# définition du champ fil infini (champ ortho dans la base
cartésienne)

Bx=np.zeros((len(y),len(x)))

By=np.zeros((len(y),len(x)))

for i in range(len(y)):
for j in range(len(x)):
print(x[jl,y[il)
r=(x[jI**2+y[i]**2)**0.5
if r<R:

# tracé du champ magnétique
plt.quiver(X,Y,Bx,By)
plt.show()

b) Champ magnétostatique créé par une bobine torique

Une bobine torique est obtenue en enroulant un fil autour d’'un
tore de révolution de section carrée. A noter que ces bobines
toriques sont trés largement utilisées dans les cartes
électroniques pour leurs propriétés magnétiques (surtout au
niveau des alimentations)

La bobine comporte N spires assimilables a des boucles carrées de
courant de c6té 2a (circuits filiformes) parcourues par un courant
d’intensité I, > 0.
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1) Déterminer la norme du champ magnétostatique en un point
quelconque de I'espace en appliquant le théoréeme d’Ampere.

2)  Exprimer le flux ¢; du champ magnétostatique a travers une
spire du circuit, puis a travers le bobinage complet (noté
alors ¢y)

3)  On définit 'inductance L d’une bobine par la relation ¢y =
Ll,. Exprimer L.

¢) Champ magnétostatique créé par un solénoide supposé
infini

Un solénoide est un cylindre de longueur [, et de rayon R
recouvert de N spires jointives dans lesquelles circule un courant
d’intensité I,. Son axe principal est noté Oz, le point O étant placé
a 'une des extrémités du cylindre.

R

1) Déterminer la direction du champ magnétostatique en
un point M de cote z,, sur l'axe.

2)  On suppose les spires suffissmment nombreuses pour
pouvoir considérer qu'une nappe de courant uniforme
circule sur le cylindre. Exprimer l'intensité élémentaire
dl qui circule dans une bande cylindrique de largeur
dzp et de cote zp.

3)  On donne l'expression du champ rayonné par une spire
sur son axe et parcourue par un courant [ : B = %’sin%l

(avec a, I'angle sous lequel est vue la spire depuis le
point de I'axe considéré). Montrer que l'expression du
champ magnétostatique élémentaire rayonné par la
spire élémentaire de longueur dz, en M est:
dBe, = —Eﬁlosinada

21,

4) Exprimer le champ magnétostatique total au point M
en fonction des angles a;, et a, qui délimitent le
solénoide.

5) La longueur du solénoide est supposée infinie et le
nombre de spires par métre inchangé. Que devient le
champ magnétostatique, noté B,, sur 'axe ?

6) Montrer, a laide du théoréme d’Ampére, que le champ
est uniforme dans le solénoide infini puis hors de celui-
ci. Que vaut le champ a l'extérieur ?
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70 A Tlaide des équations de Maxwell de la
magnétostatique, retrouver l'expression du champ
magnétique dans un solénoide infini en postulant la
nullité du champ en dehors de la structure.

8) Dans cette question, on souhaite apprécier 'écart entre
le modele du solénoide infini et le solénoide réel. Quel
doit étre le rapport l;“ pour que l'écart relatif (entre le

solénoide réel et solénoide infini) soit de 1% au centre
du solénoide.

Le graphe ci-dessous représente l’évolution de lintensité du
champ magnétostatique sur 'axe d’un solénoide (avec I = 54,1, =

40cm, R = 2,5¢m) depuis son centre vers I'une de ses extrémités.

Evolution spatiale du champ dans un solénoide
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On donne également ci-dessous une cartographié des lignes de
champ magnétique dans le méme bobinage.
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9) Repérer en quoi les 2 documents ci-dessus sont tout a
fait complémentaire.

10) Réaliser le montage ci-dessous puis estimer le nombre
de spire par metre du solénoide mis & disposition.
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d) Champ magnétostatique créé par un plan infini

On peut rencontrer des distributions de courant localisées sur des
faibles épaisseurs. On les étudie en leur prétant un vecteur
densité courant surfacique. C’est par exemple le cas :

- Des conducteurs qui vont, sous linfluence d’'un champ
électrique variable dans le temps, présenter une réponse
inductive qui va imposer des courants en surface.

- D’'un matériau supraconducteur qui crée aussi, a basses
températures, un courant surfacique en réponse a une
excitation provoquée par un champ magnétostatique
extérieur.

On se propose dans cet exercice de calculer le champ créé par une
telle nappe de courant.

y _h -

) - 7

> X
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Un plan conducteur infini Oxy est parcouru par un courant
surfacique dirigé selon le vecteur unitaire u,. Et dont l'intensité
se répartit uniformément le long de I'axe Ox. On trouve ainsi un
courant d’intensité I, > 0 sur un segment de longueur h selon Ox.

1)  Définir le vecteur densité de courant surfacique en fonction
des données du probleme.

2) Déterminer l'intensité B champ magnétostatique en un point
quelconque de lespace a l'aide du théoreme d’Ampére.
Tracer la fonction B(z) et apprécier la discontinuité du
champ magnétostatique pour cette distribution idéalisée.

3) Un second plan paralléle au premier se trouve a la cote d
selon Oz. Il est parcouru par un courant de méme intensité
mais circulant dans lautre sens. Exprimer le champ
magnétostatique engendré par la distribution.

On rappelle que les cables coaxiaux sont trés largement utilisés
dans le domaine audio ou vidéo pour transmettre I'information
entre deux points distants d’'une dizaine de métres. On se propose
d’étudier dans ce probléme le champ magnétostatique créé par un
cable coaxial. Cette analyse est en fait le départ du raisonnement
permettant de connaitre linductance linéique (et donc
I'impédance associée au cable coaxial).

On considere un cable coaxial cylindrique de longueur supposé
infini, constitué dun conducteur central plein de rayon R,
parcouru par un courant axial, uniforme d’intensité I et dun
conducteur périphérique évidé, de rayon intérieur R,, de rayon
extérieur R; (R; < R, < R;) et parcouru par un courant uniforme
également d’intensité I mais circulant en sens inverse par
rapport au courant du conducteur central. On notera e, le vecteur
directeur unitaire de 'axe commun des deux conducteurs. Soit M
un point situé a une distance r de 'axe du cable.
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1) Montrer que le champ magnétostatique B créé en M est
orthoradial. Préciser alors la forme des lignes de
champ.

2)  Montrer que le champ magnétostatique ne dépend que
d’une seule variable avec ce repérage cylindrique.

3) En appliquant le théoréme d’Ampére sur un contour C
que lon précisera, donner lexpression du champ
magnétostatique en fonction de g, 1,7, Ry, R, et R; en un
point M dans chacun des cas suivants : r > R;, R, <r <
R;, Ry <r<R,etr <R,.

4)  Dessiner l'allure de B().

Force de Laplace

A)

B)

Expliquer la mise en oscillation du filament d'une lampe a
proximité d'un aimant.

Une spire carrée filiforme de coté a parcourue par un
courant d’intensité i > 0 est placée a proximité du fil infini
parcourue par un courant d’'intensité I > 0. Les deux circuits
sont coplanaires, et la distance D entre le centre O de la
spire et le circuit rectiligne est supérieure a a/2.
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1) Représenter la force de Laplace résultante s’appliquant
sur chaque segment constituant la spire carrée.
2) Déterminer la force exercée par le fil sur la spire en
fonction de a,R,i et I.

. ii¢ i \L% N
1 lll¢¢v—) a»é—jx

3) Donner la valeur de la force magnétostatique exercée par
un fil supposé infini traversé par un courant d’intensité de
1A sur un circuit tel que i = 14,D = 1m et a = 10cm. On
donne  po =4m.1077SI.  Devronsmous prendre en
considération cette force en TP ?

C) Une tige conductrice homogéne, de masse m et de longueur [
(son centre de masse est au milieu), peut tourner
parfaitement dans un plan vertical, autour d'un axe Oz. Son
extrémité mobile affleure dans une cuve a mercure, ce qui
permet le passage d’'un courant permanent d’intensité /. On
appligque un champ magnétique B uniforme et
perpendiculaire au plan vertical.

I a

Exprimer la position de repos 6, de la tige en fonction des

données du sujet.

Voici la configuration des Switches pour cet exercice :

ON
1 2 3 4 5 & 7 8

ON
1 2 3 4 5 6 7 8

Le moteur pas a pas étudié est représenté ci-dessous :
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Ce moteur ef§ branché sur la mallette :
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Voici le principe d'un moteur pas a pas dont le rotor est un
aimant permanent et dont le stator est constitué de deux pairs de
bobinages (IN1,IN2,IN3,IN4). Le principe de rotation repose sur
Peffet du moment de la force magnétique qui tend a aligner le
rotor dans la direction et le sens du champ magnétique appliqué.

Voici une illustration simplifiée d'un moteur dont le pas est de
45°:

(1,0,0,0)

(0,1,0,0)
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.IN1

Et donc pour une rotation compléte, il faut rajouter (0,0,1,1),
(0,0,0,1),(1,0,0,1)

Le moteur pas a pas 28BYJ-48 étudié est représenté ci-dessous.
Le rotor et le stator sont dentelés :

Les impulsions électriques émises sur les 4 fils (IN1,IN2,IN3,IN4)
permettent donc une rotation avec un pas angulaire a. Dans
notre cas, le pas angulaire est a = 5,625° (car 32 dents sur le
rotor) et il faut donc 64 pas pour une rotation compléte.

Le cycle ci-dessous permet donc davancer de 4 dents:
(1,0,0,0),(1,1,0,0,),(0,1,0,0),(0,1,1,0),(0,0,1,0),(0,0,1,1),
(0,0,0,1),(1,0,0,1)

Enfin, ce moteur est muni d’engrenages :
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Le pas angulaire apparent du rotor métallique devient alors :—4.

On donne ci-dessous le programme moteur.py permettant
d’imposer un cycle de rotation. Compléter ce programme afin que
le moteur effectue un tour complet.

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)

control_pins = [29,31,33,35]#IN1,2,3 et 4
for pin in control_pins:

GPIO.setup(pin, GPIO.OQUT)#affectation en sortie des fils
d'alimentation des bobinages

GPIO.output(pin, O)}#initialisation a 1'état bas

seq =1
[1,0,0,01,
[1,1,0,01,
[0,1,0,0],
[0,1,1,0],
[0,0,1,0],
[0,0,1,1],
[0,0,0,11,
[1,0,0,1]

1

for j in range(8):
for pin in range(4):
GPIO.output(control_pins[pinl, seq[jllpin])
time.sleep(0.001)
GPIO.cleanup(

Exercice 10 : Dipéle magnétique

Vous avez a disposition :

- Un aimant droit pouvant tourner librement suivant un
axe de rotation sur un liaison pivot supposée parfaite en
0. On note J le moment d’'inertie de l'aimant (vous avez
a disposition un pied a coulisse et une balance pour le
déterminer)

g,
0 A 10
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- Une alimentation en courant réglable (délivrant
typiquement 1 A) ainsi qu’'un bobinage
- Une carte arduino-nano et son capteur de champ
magnétique

Expérimentalement, on essayera de placer le point O & quelques
centimétres de la bobine et de maniére a ce qu'il appartienne a l'axe
principal du bobinage. x

m -
ﬂ Bext .
Y

1) Alimenter le bobinage et observer leffet du
champ magnétique produit par le bobinage.

a) Identifier alors le sens du champ Bey, et du
vecteur m a I'équilibre. Avec la convention
ci-dessus, que vaut l'angle 6., associer a
cette position d’équilibre

b) Placer le dipole en 6 =m, observer le
mouvement d’oscillation et vérifier qu’il est
possible d’apprécier ce mouvement en
plagant la carte arduino suivant 'axe x.

2) Mettre en équation le mouvement du dipdle en

s’ = ’ . . .
présence de B,,; et en déduire une estimation de
Il



