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Description d’une distribution de courant 

Activité 1 : Description d’une distribution de courant  

 

1) Soit un fil conducteur de géométrie cylindrique, de section 

droite 𝑆 constante, de rayon 𝑅, parcouru par un courant 

d’électrons d’intensité 𝐼 constante, positive (avec le fléchage 

utilisé) et réparti uniformément sur 𝑆. Le mouvement des 

charges est dans la direction de l’axe du cylindre. 

i) Exprimer la norme du vecteur densité de courant 

volumique en fonction de 𝐼 et 𝑅. 

ii) Estimer la norme du vecteur densité de courant 

volumique dans le cas d’un fil de T.P. traversé par un 

courant de 1A et de section 𝑆 = 1𝑚𝑚2. 

iii) Le conducteur utilisé est en cuivre. Le cuivre présente 

une conductivité non nulle en proposant l’électron à la 

conduction (1 électron libre par atome). Soit 𝜌 la 

masse volumique du cuivre et 𝑀𝐶𝑢 sa masse molaire. 

Donner l’expression de la concentration en électrons, 

notée 𝑛𝑚, participant à la conduction. 

iv) On donne 𝜌 ≈ 10. 103𝑘𝑔.𝑚−3, 𝑀𝐶𝑢 ≈ 60𝑔.𝑚𝑜𝑙
−1 et le 

nombre d’Avogadro 𝑁𝑎 ≈ 6. 10
23𝑚𝑜𝑙−1, calculer 𝑛𝑚.  

v) Des questions précédentes, donner un ordre de 

grandeur de la vitesse de dérive des charges dans un 

fil conducteur de TP. 

2) Soit un fil conducteur de géométrie cylindrique, de section 

droite 𝑆 constante, de rayon 𝑅, parcouru par un courant 

d’intensité 𝐼 > 0 constante réparti non uniformément sur 𝑆. 

Le vecteur densité volumique de courant est axial et suit la 

loi 𝑗(𝑟) = 𝑗0
𝑟

𝑅
 où 𝑗0 > 0 est une constante. Exprimer 𝐼 en 

fonction de 𝑗0 et 𝑅. 

Activité 2 : Loi d’Ohm 

 

On considère un conducteur électrique, cylindrique, d’axe 𝑂𝑧 et 

dont les charges mobiles sont des électrons. Leur vitesse initiale 

est nulle ; à partir de l’instant 𝑡 = 0, ils sont soumis à un champ 

électrostatique uniforme et stationnaire 𝐸⃗ = 𝐸𝑢𝑧⃗⃗⃗⃗ . D’autre part, ils 

sont soumis dans le conducteur à une force de frottement 𝑓 =

−
𝑚

𝜏
𝑣 , 𝑚 étant la masse de l’électron, 𝜏 une constante physique et 

𝑣  est la vitesse commune aux électrons par rapport au 

conducteur. On donne 𝑚 ≈ 10−30𝑘𝑔, 𝑒 ≈ 10−19𝐶,𝐸 ≈ 0,1𝑉.𝑚−1 et 

𝜏 ≈ 10−14 unité SI. 

 

1) Quelle est l’origine physique de la force de frottement ?  

2) Obtenir l’équation différentielle vérifiée par la vitesse 𝑣 

d’un électron. 

3) Donner alors la dimension de 𝜏 et proposer une 

interprétation de cette grandeur. 

4) Donner également l’expression puis la valeur de la vitesse 

limite 𝑣𝑙 = 𝑣(𝑡 → ∞) de l’électron 

5) Lorsque le régime permanent est établi, montrer que le 

vecteur densité de courant 𝑗  peut se mettre sous la forme 

𝑗 = 𝛾𝐸⃗  où 𝛾 est la conductivité du matériau que l’on 

cherchera à exprimer en fonction de 𝑚, 𝑒, 𝜏 et 𝑛𝑚 

(concentration en électrons participant à la conduction). 

Faire l’application numérique pour le cuivre 𝑛𝑚 ≈ 10
29𝑚−3. 

6) 𝑗 = 𝛾𝐸⃗  est appelée loi d’Ohm locale, chercher à obtenir la 

loi d’Ohm « couramment » écrite en électrocinétique pour le 

conducteur cylindrique de section S, de longueur 𝑙 = 𝐴𝐵, 

parcourue par un courant uniformément réparti dessiné ci-

dessous et sous une ddp 𝑈 = 𝑉𝐴 − 𝑉𝐵. En déduire alors 

l’expression de sa résistance 𝑅𝐴𝐵 en fonction de 𝛾,𝑙 et 𝑆.  

 
7) Proposer un schéma électrique à la situation ci-dessous et 

expliquer la modification possible de l’intensité lumineuse 

de la lampe. 

 
8) A partir de la loi d’Ohm locale, déterminer la puissance 

volumique 𝑃𝑣𝑜𝑙 échangée par le champ électrique avec le 

conducteur en fonction de 𝛾 et 𝐸⃗ . Commenter le signe de 

cette grandeur énergétique. 

 

Equations de Maxwell 

Activité 3 : Champ magnétostatique uniforme 

Etablir que, si les lignes de champ magnétostatique sont des 

droites parallèles dans une région vide de courant, alors 𝐵⃗  est 

uniforme. 

Activité 4 : Champ magnétostatique ou pas ? 

Quelles sont, parmi les configurations suivantes, celles qui 

peuvent représenter un champ magnétostatique ? Où pourraient 

être les courants correspondants ? Le champ est supposé 

invariant par translation dans la direction perpendiculaire à la 

page. 

 

Activité 5 : Donne-moi ton champ, je te dirai qui tu es  

Pour une certaine distribution de courants d’axe (𝑂𝑧), en 

repérage cylindrique (𝑟, 𝛳, 𝑧), le champ magnétostatique créé en 

𝑀 est 𝐵⃗ = 𝐵𝛳(𝑟)𝑒𝛳⃗⃗⃗⃗ , avec 𝐵0 et 𝑟0 constantes : 

𝐵𝛳(𝑟) = 𝐵0 (
𝑟

𝑟0
) pour 𝑟 < 𝑟0 

𝐵𝛳(𝑟) = 𝐵0 (
𝑟0

𝑟
) pour 𝑟 > 𝑟0 

On donne l’opérateur rotationnel en coordonnées cylindriques 

pour un champ de vecteur 𝑎  : 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑎 (𝑀) =

(

 
 
 

1

𝑟

𝜕𝑎𝑧
𝜕𝜗

−
𝜕𝑎𝜗
𝜕𝑧

𝜕𝑎𝑟
𝜕𝑧

−
𝜕𝑎𝑧
𝜕𝑟

1

𝑟

𝜕𝑟𝑎𝜗
𝜕𝑟

−
1

𝑟

𝜕𝑎𝑟
𝜕𝜗 )

 
 
 

 

1) Enoncer l’équation de Maxwell-Ampère. 
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2) Analyser la direction et la (ou les) variable(s) dont 

dépend vecteur densité de courant 𝑗 . 

3) Donner l’expression du vecteur densité de courant 𝑗  en 

tout point de l’espace en utilisant l’équation de Maxwell-

Ampère. Identifier la distribution de charge. 

4) Donner la valeur de l’intensité du courant 𝐼 traversant 

l’ensemble de ce support conducteur. 

Théorème d’Ampère 

Activité 6 : Entraînement au calcul du champ magnétostatique 

avec le théorème d’Ampère  

a) Champ magnétostatique créé par un fil de rayon R 

On considère un fil infini de rayon 𝑅, d’axe 𝑂𝑧, parcouru par un 

courant d’intensité constante 𝐼0 uniforme sur toute la section du 

fil et compté positivement par le sens de fléchage choisi. Ce 

courant a pour origine un déplacement d’électrons dans la même 

direction que  l’axe 𝑂𝑧. 

 

1) Exprimer le vecteur densité de courant volumique 𝑗  en 

fonction de 𝑅 et 𝐼0 

2) Faire l’analyse des symétries et invariances de cette 

distribution de courant en repérage cylindrique (𝑟, 𝛳, 𝑧) 

et montrer que le champ magnétostatique est 

orthoradial et ne dépend que de 𝑟. 

3) Expliquer l’expérience photographiée ci-dessous : 

  

 

4) En déduire que la circulation du champ 

magnétostatique ∮ 𝐵⃗ 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  
𝛤

  est facilement exprimée à 

l’aide d’un contour (d’Ampère) 𝜞 circulaire et orienté, de 

rayon 𝑟, centré autour de l’axe 𝑂𝑧. 

5) Chercher à exprimer, en fonction de 𝑟, 𝑅 et 𝐼0, le 

courant, noté 𝐼𝑒𝑛𝑙𝑎𝑐é, enlacé par 𝜞 si 𝑟 ≥ 𝑅 et si 𝑟 ≤ 𝑅. 

6) En utilisant le théorème d’Ampère, donner l’expression 

du champ magnétostatique dans le fil et à l’extérieur du 

fil.  

7) Compléter le programme PYTHON ci-dessous afin 

d’obtenir le tracé de quelques vecteurs champ 

magnétique créé par le fil étudié précédemment dans 

un plan de côte 𝑧 donné.  

 #définition des constantes 

mu0=4*np.pi*10**-7 

I0=1 

R=10 

#definition des points de mesure 

x = np.linspace(-20,20,10) 

y = np.linspace(-20,20,10) 

 

X, Y = np.meshgrid(x,y) #génère le maillage de points associés à 

chaque mesure 

 

 

# définition du champ fil infini (champ ortho dans la base 

cartésienne) 

Bx=np.zeros((len(y),len(x))) 

By=np.zeros((len(y),len(x))) 

 

for i in range(len(y)): 

    for j in range(len(x)): 

        print(x[j],y[i]) 

        r=(x[j]**2+y[i]**2)**0.5 

        if r<R: 

        ........................ 

        ....................... 

        else : 

        ........................  

        ....................... 

    

# tracé du champ magnétique  

plt.quiver(X,Y,Bx,By) 

plt.show() 

 

b) Champ magnétostatique créé par une bobine torique 

Une bobine torique est obtenue en enroulant un fil autour d’un 

tore de révolution de section carrée. A noter que ces bobines 

toriques sont très largement utilisées dans les cartes 

électroniques pour leurs propriétés magnétiques (surtout au 

niveau des alimentations) 

La bobine comporte 𝑁 spires assimilables à des boucles carrées de 

courant de côté 2𝑎 (circuits filiformes) parcourues par un courant 

d’intensité 𝐼0 > 0. 

 

𝐼0 > 0 

𝑧 
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1) Déterminer la norme du champ magnétostatique en un point 

quelconque de l’espace en appliquant le théorème d’Ampère. 

2) Exprimer le flux 𝜙1 du champ magnétostatique à travers une 

spire du circuit, puis à travers le bobinage complet (noté 

alors 𝜙𝑁) 

3) On définit l’inductance 𝐿 d’une bobine par la relation 𝜙𝑁 =

𝐿𝐼0. Exprimer 𝐿. 

c) Champ magnétostatique créé par un solénoïde supposé 

infini 

Un solénoïde est un cylindre de longueur 𝑙0 et de rayon 𝑅 

recouvert de 𝑁 spires jointives dans lesquelles circule un courant 

d’intensité 𝐼0. Son axe principal est noté 𝑂𝑧, le point O étant placé 

à l’une des extrémités du cylindre. 

 

1) Déterminer la direction du champ magnétostatique en 

un point M de cote 𝑧𝑀 sur l’axe. 

2) On suppose les spires suffisamment nombreuses pour 

pouvoir considérer qu’une nappe de courant uniforme 

circule sur le cylindre. Exprimer l’intensité élémentaire 

𝑑𝐼 qui circule dans une bande cylindrique de largeur 

𝑑𝑧𝑃 et de cote 𝑧𝑃. 

3) On donne l’expression du champ rayonné par une spire 

sur son axe et parcourue par un courant 𝐼 : 𝐵 =
µ0𝐼

2𝑅
𝑠𝑖𝑛3𝛼 

(avec 𝛼, l’angle sous lequel est vue la spire depuis le 

point de l’axe considéré). Montrer que l’expression du 

champ magnétostatique élémentaire rayonné par la 

spire élémentaire de longueur 𝑑𝑧𝑝′ en 𝑀 est : 

𝑑𝐵⃗ 𝑒𝑧⃗⃗  ⃗ = −
µ0
2

𝑁

𝑙0
𝐼0𝑠𝑖𝑛𝛼𝑑𝛼 

 

4) Exprimer le champ magnétostatique total au point M 

en fonction des angles 𝛼1 et 𝛼2 qui délimitent le 

solénoïde. 

 

5) La longueur du solénoïde est supposée infinie et le 

nombre de spires par mètre inchangé. Que devient le 

champ magnétostatique, noté 𝐵∞ sur l’axe ?  

6) Montrer, à l’aide du théorème d’Ampère, que le champ 

est uniforme dans le solénoïde infini puis hors de celui-

ci. Que vaut le champ à l’extérieur ? 

7) A l’aide des équations de Maxwell de la 

magnétostatique, retrouver l’expression du champ 

magnétique dans un solénoïde infini en postulant la 

nullité du champ en dehors de la structure. 

8) Dans cette question, on souhaite apprécier l’écart entre 

le modèle du solénoïde infini et le solénoïde réel. Quel 

doit être le rapport 
𝑙0

𝑅
 pour que l’écart relatif (entre le 

solénoïde réel et solénoïde infini) soit de 1% au centre 

du solénoïde.  

Le graphe ci-dessous représente l’évolution de l’intensité du 

champ magnétostatique sur l’axe d’un solénoïde (avec 𝐼 = 5𝐴, 𝑙0 =

40𝑐𝑚,𝑅 = 2,5𝑐𝑚) depuis son centre vers l’une de ses extrémités. 

  

On donne également ci-dessous une cartographié des lignes de 

champ magnétique dans le même bobinage. 

 

9) Repérer en quoi les 2 documents ci-dessus sont tout à 

fait complémentaire. 

10) Réaliser le montage ci-dessous puis estimer le nombre 

de spire par mètre du solénoïde mis à disposition. 

 

𝑑𝑧𝑃′ 

𝑂 



 Electromagnétisme Activités du chapitre 4 TSI 2 

4 
 

d) Champ magnétostatique créé par un plan infini 

On peut rencontrer des distributions de courant localisées sur des 

faibles épaisseurs. On les étudie en leur prêtant un vecteur 

densité courant surfacique. C’est par exemple le cas : 

- Des conducteurs qui vont, sous l’influence d’un champ 

électrique variable dans le temps, présenter une réponse 

inductive qui va imposer des courants en surface. 

- D’un matériau supraconducteur qui crée aussi, à basses 

températures, un courant surfacique en réponse à une 

excitation provoquée par un champ magnétostatique 

extérieur.  

On se propose dans cet exercice de calculer le champ créé par une 

telle nappe de courant. 

 

Un plan conducteur infini 𝑂𝑥𝑦 est parcouru par un courant 

surfacique dirigé selon le vecteur unitaire 𝑢𝑦⃗⃗⃗⃗  . Et dont l’intensité 

se répartit uniformément le long de l’axe 𝑂𝑥. On trouve ainsi un 

courant d’intensité 𝐼0 > 0 sur un segment de longueur ℎ selon 𝑂𝑥. 

1) Définir le vecteur densité de courant surfacique en fonction 

des données du problème. 

2) Déterminer l’intensité 𝐵 champ magnétostatique en un point 

quelconque de l’espace à l’aide du théorème d’Ampère. 

Tracer la fonction 𝐵(𝑧) et apprécier la discontinuité du 

champ magnétostatique pour cette distribution idéalisée. 

3) Un second plan parallèle au premier se trouve à la cote 𝑑 

selon 𝑂𝑧. Il est parcouru par un courant de même intensité 

mais circulant dans l’autre sens. Exprimer le champ 

magnétostatique engendré par la distribution. 

Activité 7 : Câble coaxial 

On rappelle que les câbles coaxiaux sont très largement utilisés 

dans le domaine audio ou vidéo pour transmettre l’information 

entre deux points distants d’une dizaine de mètres. On se propose 

d’étudier dans ce problème le champ magnétostatique créé par un 

câble coaxial. Cette analyse est en fait le départ du raisonnement 

permettant de connaître l’inductance linéique (et donc 

l’impédance associée au câble coaxial). 

On considère un câble coaxial cylindrique de longueur supposé 

infini, constitué d’un conducteur central plein de rayon 𝑅1 

parcouru par un courant axial, uniforme d’intensité 𝐼 et d’un 

conducteur périphérique évidé, de rayon intérieur 𝑅2, de rayon 

extérieur 𝑅3 (𝑅1 < 𝑅2 < 𝑅3) et parcouru par un courant uniforme 

également d’intensité 𝐼 mais circulant en sens inverse par 

rapport au courant du conducteur central. On notera 𝑒𝑧⃗⃗  ⃗ le vecteur 

directeur unitaire de l’axe commun des deux conducteurs. Soit M 

un point situé à une distance 𝑟 de l’axe du câble. 

 

1) Montrer que le champ magnétostatique 𝐵⃗  créé en M est 

orthoradial. Préciser alors la forme des lignes de 

champ. 

2) Montrer que le champ magnétostatique ne dépend que 

d’une seule variable avec ce repérage cylindrique. 

3) En appliquant le théorème d’Ampère sur un contour 𝒞 

que l’on précisera, donner l’expression du champ 

magnétostatique en fonction de µ0, 𝐼, 𝑟, 𝑅1, 𝑅2 et 𝑅3 en un 

point M dans chacun des cas suivants : 𝑟 ≥ 𝑅3, 𝑅2 ≤ 𝑟 ≤

𝑅3, 𝑅1 ≤ 𝑟 ≤ 𝑅2 et 𝑟 ≤ 𝑅1.  

4) Dessiner l’allure de 𝐵(𝑟). 

 

 

Force de Laplace 

Activité 8 : Force de Laplace  

A) Expliquer la mise en oscillation du filament d’une lampe à 

proximité d’un aimant. 

 

B) Une spire carrée filiforme de côté 𝑎 parcourue par un 

courant d’intensité 𝑖 > 0 est placée à proximité du fil infini 

parcourue par un courant d’intensité 𝐼 > 0. Les deux circuits 

sont coplanaires, et la distance 𝐷 entre le centre 𝑂 de la 

spire et le circuit rectiligne est supérieure à  𝑎/2.  
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1) Représenter la force de Laplace résultante s’appliquant 

sur chaque segment constituant la spire carrée. 

2) Déterminer la force exercée par le fil sur la spire en 

fonction de 𝑎, 𝑅, 𝑖 et 𝐼. 

  

3) Donner la valeur de la force magnétostatique exercée par 

un fil supposé infini traversé par un courant d’intensité de 

1A sur un circuit tel que 𝑖 = 1𝐴, 𝐷 = 1𝑚 et 𝑎 = 10𝑐𝑚. On 

donne µ0 = 4𝜋. 10
−7𝑆𝐼. Devrons-nous prendre en 

considération cette force en TP ? 

C) Une tige conductrice homogène, de masse 𝑚 et de longueur 𝑙 

(son centre de masse est au milieu), peut tourner 

parfaitement dans un plan vertical, autour d’un axe Oz. Son 

extrémité mobile affleure dans une cuve à mercure, ce qui 

permet le passage d’un courant permanent d’intensité 𝐼. On 

applique un champ magnétique 𝐵⃗  uniforme et 

perpendiculaire au plan vertical. 

 

Exprimer la position de repos 𝛳𝑒 de la tige en fonction des 

données du sujet. 

 

 

Activité 9 : Contrôle d’un moteur pas à pas 

Voici la configuration des Switches pour cet exercice : 

 

Le moteur pas à pas étudié est représenté ci-dessous : 

 

Ce moteur est branché sur la mallette : 

 

I- Principe d’un moteur pas à pas 

Voici le principe d’un moteur pas à pas dont le rotor est un 

aimant permanent et dont le stator est constitué de deux pairs de 

bobinages (IN1,IN2,IN3,IN4). Le principe de rotation repose sur 

l’effet du moment de la force magnétique qui tend à aligner le 

rotor dans la direction et le sens du champ magnétique appliqué. 

Voici une illustration simplifiée d’un moteur dont le pas est de 

45° : 

(1,0,0,0) 

 

(1,1,0,0) 

 

(0,1,0,0) 
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(0,1,1,0) 

 

(0,0,1,0) 

 

Et donc pour une rotation complète, il faut rajouter (0,0,1,1), 

(0,0,0,1),(1,0,0,1) 

II- Moteur et alimentation 

Le moteur pas à pas 28BYJ-48 étudié est représenté ci-dessous. 

Le rotor et le stator sont dentelés : 

 

Les impulsions électriques émises sur les 4 fils (IN1,IN2,IN3,IN4) 

permettent donc une rotation avec un pas angulaire 𝛼. Dans 

notre cas, le pas angulaire est 𝛼 = 5,625° (car 32 dents sur le 

rotor) et il faut donc 64 pas pour une rotation complète.  

Le cycle ci-dessous permet donc d’avancer de 4 dents : 

(1,0,0,0),(1,1,0,0,),(0,1,0,0),(0,1,1,0),(0,0,1,0),(0,0,1,1), 

(0,0,0,1),(1,0,0,1) 

Enfin, ce moteur est muni d’engrenages : 

 

Le pas angulaire apparent du rotor métallique devient alors 
𝛼

64
.  

On donne ci-dessous le programme moteur.py permettant 

d’imposer un cycle de rotation. Compléter ce programme afin que 

le moteur effectue un tour complet. 

import RPi.GPIO as GPIO 

import time 

GPIO.setmode(GPIO.BOARD) 

 

control_pins = [29,31,33,35]#IN1,2,3 et 4 

for pin in control_pins: 

  GPIO.setup(pin, GPIO.OUT)#affectation en sortie des fils 

d'alimentation des bobinages 

  GPIO.output(pin, 0)#initialisation à l'état bas 

   

seq = [ 

  [1,0,0,0], 

  [1,1,0,0], 

  [0,1,0,0], 

  [0,1,1,0], 

  [0,0,1,0], 

  [0,0,1,1], 

  [0,0,0,1], 

  [1,0,0,1] 

] 

 

for j in range(8): 

    for pin in range(4): 

      GPIO.output(control_pins[pin], seq[j][pin]) 

    time.sleep(0.001) 

GPIO.cleanup() 

 

Exercice 10 : Dipôle magnétique 

Vous avez à disposition : 

- Un aimant droit pouvant tourner librement suivant un 

axe de rotation sur un liaison pivot supposée parfaite en 

𝑂. On note 𝐽 le moment d’inertie de l’aimant (vous avez 

à disposition un pied à coulisse et une balance pour le 

déterminer) 

 

Rotor métallique 
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- Une alimentation en courant réglable (délivrant 

typiquement 1 A) ainsi qu’un bobinage 

- Une carte arduino-nano et son capteur de champ 

magnétique 

 

1) Alimenter le bobinage et observer l’effet du 

champ magnétique produit par le bobinage.  

a) Identifier alors le sens du champ 𝐵𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et du 

vecteur 𝑚⃗⃗  à l’équilibre. Avec la convention 

ci-dessus, que vaut l’angle 𝜃𝑒𝑞 associer à 

cette position d’équilibre 

b) Placer le dipôle en 𝜃 = 𝜋, observer le 

mouvement d’oscillation et vérifier qu’il est 

possible d’apprécier ce mouvement en 

plaçant la carte arduino suivant l’axe 𝑥. 

2) Mettre en équation le mouvement du dipôle en 

présence de 𝐵⃗ 𝑒𝑥𝑡 et en déduire une estimation de 

‖𝑚⃗⃗ ‖. 

 

 

 

 


