Devoir_cours_25 Nom:

Prénom:

- 1) Donner l'expression générale du potentiel chimique μ_i d'un constituant i à la température T en fonction de son potentiel standard $\mu_i^{0,ref}(T)$ et de son activité a_i . On note R la constante des gaz parfait.
- 2) Donner l'expression de l'activité (on note $P^0 = 1bar$ et $C^0 = 1mol/L$):
- D'un gaz en fonction de sa pression partielle P_i :
- D'un gaz en fonction de sa fraction molaire x_i (on note P_t la pression totale):
- D'un soluté de concentration C_i :
- D'un liquide seul dans sa phase:
- 3) Soit un milieu réactionnel, on note n_i le nombre de moles du constituant i et μ_i son potentiel chimique. Exprimer l'enthalpie libre G du système en fonction de n_i et μ_i .
- 4) Donner l'expression de l'enthalpie libre de réaction $\Delta_r G$:
- En fonction des potentiels chimiques μ_i des constituants i de la réaction (on note ν_i le coefficient stœchiométrique algébrisé associé)
- En fonction de l'enthalpie libre standard de réaction $\Delta_r G^0$ et du quotient réactionnel O
- En fonction de Q et de la constante d'équilibre $K^0(T)$
- 5) Donner la relation entre $\Delta_r G^0$ et $K^0(T)$
- 6) Si une réaction se déroule dans le sens 1 :
- Quel est le signe de $\Delta_r G$?
- Quel est l'inégalité entre O et $K^0(T)$?
- Quel est le signe de $\left(\frac{\partial G}{\partial \xi}\right)_{T,P}$?
- 7) Relier $\Delta_r G^0$, $\Delta_r H^0$ et $\Delta_r S^0$.

TSI2

On considère la réaction de synthèse de l'ammoniac :

$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$$

On donne l'enthalpie libre standard de réaction $\Delta_r G^0$ à 700K: $\Delta_r G^0(700K) = 70kJ$. mol^{-1} . On donne la constante des gaz parfait R = 10J. K^{-1} . mol^{-1}

- 8) Exprimer puis calculer la constante d'équilibre $K^0(T)$. On donne $e^{-10} \approx 5 \times 10^{-5}$
- 9) Le système initial est constitué d'un mélange stœchiométrique des réactifs et produits sous une pression totale de 10 bar. Dans quel sens évolue la transformation?

On considère la réaction suivante à 400K:

$$C_2H_{4(g)} + H_2O_{(g)} = C_2H_5OH_{(g)}$$

Composé	$\Delta_f H^0(kJ.mol^{-1})$	$S_m^0(J.K^{-1}.mol^{-1})$
$C_2H_{4(g)}$	50	300
$H_2O_{(g)}$	-250	200
$C_2H_5OH_{(g)}$	-250	300

- 1) Calculer l'enthalpie standard de réaction et commenter
- 2) Calculer l'entropie standard de réaction et commenter
- 3) Calculer la constante d'équilibre à 400K, on donne $e^{-30/4} \approx 5 \times 10^{-4}$
- 4) Quel est le sens de la réaction si la pression partielle de chaque réactif est de 0.1bar et que celle du produit est de 1mbar