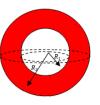
Devoir cours 10 Nom: Prénom:

1)	Donner l'unité du vecteur densité de flux thermique $\overrightarrow{J_{th}}$	/1
2)	On considère une surface S ouverte et orientée (dont l'élément vectoriel de surface est noté \overrightarrow{dS}). Donner l'expression de la puissance thermique P_{th} en fonction du vecteur densité de flux thermique $\overrightarrow{J_{th}}$.	/1
3)	On considère une conduction thermique unidirectionnelle et unidimensionnelle à travers une fenêtre perpendiculaire à un axe $0x$. Le vecteur densité de flux thermique est uniforme et tel que $\overrightarrow{J_{th}}=j_{th}\overrightarrow{u_x}$. La puissance thermique traversant cette fenêtre de surface $S=5m^2$ est $P_{th}=10W$. Donner l'expression puis la valeur de j_{th} .	/1
4)	Enoncer la loi de Fourier et donner l'unité de la conductivité thermique λ .	/1
$j_{th}(y)$	t un solide siège d'une conduction thermique unidirectionnelle et dimensionnelle caractérisée par un vecteur densité de flux thermique $\overline{J_{th}}=y)\overline{u_y}$ (en repérage cartésien). Ce pavé droit est d'épaisseur e , de surface S et de ductivité thermique λ . Le régime est stationnaire et les conditions monobares.	
5)	Justifier que la puissance thermique P_{th} traversant chaque section S de ce pavé soit conservée ?	/1

Dans la suite, nous supposerons $P_{th}>0$ et on note $d\vec{S}=dS\overrightarrow{u_y}$ l'élément vectoriel de surface de S .			
6)	Exprimer $j_{th}(y)$ en fonction de P_{th} et S . Commenter.	/2	
7)	Appliquer la loi de Fourier à ce cas particulier et donner une expression de j_{th}	/4	
	en fonction de λ et d'une dérivée du champ des températures $T(y)$.	/1	
8)	Donner l'expression de $T(y)$ en fonction de P_{th} , S et λ sachant que $T(0) = T_0$	/1	
۵)		/4	
9)	Donner l'expression de $T(e)$ en fonction en fonction de P_{th} , S , λ et T_0 .	/1	
10)	Tracer l'allure de $T(y)$ dans le solide.	/1	
		, -	

Soit un échantillon solide de conductivité λ en forme de coquille sphérique compris entre les rayons R_1 et $R_2 > R_1$. On se place en régime stationnaire et le champ des températures est tel que T(r) en repérage sphérique avec : $T(R_1) = T_1$ et $T(R_2) = T_2 < T_1$.



/3

11) Donner l'expression de la résistance thermique en fonction des constantes du problème.

On donne l'opérateur gradient en sphérique :
$$\overrightarrow{grad}T = \begin{pmatrix} \frac{\partial T}{\partial r} \\ \frac{1}{r} \frac{\partial T}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial T}{\partial \theta} \end{pmatrix}$$

12) Soit une maison de résistance thermique R_{th} . On suppose que la température moyenne extérieur est de 5°C. De combien la facture énergétique est multipliée si la consigne en témpérature passe de $T_{int,1} = 15$ °C à $T_{int,1} = 25$ °C.

On considère une conduction thermique unidirectionnelle et unidimensionnelle s'établissant dans un solide de masse volumique ρ , de capacité thermique massique c, de conductivité thermique λ . On note $\vec{j} = j(x) \overrightarrow{u_x}$ le vecteur densité de flux thermique décrivant la diffusion thermique (aucun autre transfert thermique n'est à prendre en compte). On note T(x,t) le champ des températures.

14) Soit τ le temps de chauffage imposé au solide, exprimer la distance caractéristique δ de diffusion de la chaleur en fonction des données du sujet.

13) Etablir l'équation de la chaleur à partir d'un bilan enthalpique

15) Monsieur X sait qu'un poulet de 1 kg doit être cuit pendant 1 h pour un réglage donné de son four. En indiquant vos hypothèses, estimer le temps de cuisson nécessaire pour un poulet de 2 kg en conservant le même réglage du four

