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Document 1 : L’opérateur Laplacien vectoriel : 

En cartésienne : ∆⃗⃗ 𝑎 = (
∆𝑎𝑥
∆𝑎𝑦
∆𝑎𝑧

) =

(

  
 

𝜕2𝑎𝑥

𝜕𝑥2
+
𝜕2𝑎𝑥

𝜕𝑦2
+
𝜕2𝑎𝑥

𝜕𝑧2

𝜕2𝑎𝑦

𝜕𝑥2
+
𝜕2𝑎𝑦

𝜕𝑦2
+
𝜕2𝑎𝑦

𝜕𝑧2

𝜕2𝑎𝑧

𝜕𝑥2
+
𝜕2𝑎𝑧

𝜕𝑦2
+
𝜕2𝑎𝑧

𝜕𝑧2 )

  
 

 

Document 2 : spectre des OEM 

 

Type 
d’onde 

Ondes 
Hertziennes 

Micro ondes IR Visible UV Rayon X Rayon   

Production Antenne + courant 
oscillant 

Antenne + courant 
oscillant 

Rayon-
nement 
émis par 
un corps 
échauf-
fé 

Désexcita-
tion des 
électrons 

Désexcita-
tion des 
électrons 

Désexcitation 
des électrons 
de cœur d’un 
atome suite à 
un 
bombardement 
d’électrons 
rapides 

désexcitation 
du noyau 
d’un atome 
suite à une 
réaction 
nucléaire 
(fission, 
fusion…) 

Quelques 
utilisations 

Radio FM : 100MHz 
 
Radioamateur 
Petites ondes : radios 
AM 1MHz 
 
Grandes ondes : 
fréquence de secours 

 

TV satellite (10 GHz) 
Four µ 
ondes(2,46GHz),  
GSM (900MHz) 
TV ( 800 MHz) 

Spectros
copie IR, 
caméra 
IR, 
diode 
laser 
pour 
fibres 
optique
s 

Réaction 
photochi-
mique 
dans les 
yeux 

Réaction 
photochi-
mique, 
bronzage 

La faible 
longueur 
d’onde de ce 
rayonnement 
lui confère un 
fort pouvoir 
pénétrant : 
Radiographie 

Rayonnement 
très 
dangereux car 
très 
énergétique : 
Destruction 
de tumeurs 
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Document 3 : La notation complexe des OPPH : 

a) Ecriture complexe de l’OPPH 

Soit un champ électrique vérifiant l’écriture d’une OPPH avec 𝑘⃗ = 𝑘𝑢⃗ =
𝜔

𝑐
𝑢⃗  et 𝑢⃗  la direction de 

propagation donnée par : 

𝐸⃗ (𝑀, 𝑡) = (

𝐸0𝑥𝑐𝑜𝑠(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜙𝑥)

𝐸0𝑦𝑐𝑜𝑠(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜙𝑦)

𝐸0𝑧𝑐𝑜𝑠(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜙𝑦)

) 

Cette notation réelle est lourde. Les équations de Maxwell sont linéaires à coefficients constants 

on peut utiliser la représentation complexe : 

𝐸⃗ (𝑀, 𝑡) = 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) Avec 𝐸0⃗⃗⃗⃗ = (

𝐸0𝑥𝑒𝑥𝑝(𝑗𝜙𝑥)

𝐸0𝑦𝑒𝑥𝑝(𝑗𝜙𝑦)

𝐸0𝑧𝑒𝑥𝑝(𝑗𝜙𝑦)

) 

Avec 𝑅𝑒 (𝐸⃗ (𝑀, 𝑡)) = 𝐸⃗ (𝑀, 𝑡) 

b) Dérivation temporelle 

On peut alors remarquer que 
𝜕𝐸⃗ (𝑀,𝑡)

𝜕𝑡
= 𝑗𝜔𝐸⃗ (𝑀, 𝑡) ainsi 

𝜕

𝜕𝑡
= 𝑗𝜔 

c) L’opérateur nabla 

L’expression de l’opérateur nabla en coordonnées cartésienne est :∇⃗⃗ =

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 

 

Ainsi l’opérateur divergent s’écrit en coordonnée cartésienne : 𝑑𝑖𝑣𝑎 = ∇⃗⃗ . 𝑎  

L’opérateur rotationnel peut s’écrire en coordonnée cartésienne :𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑎 = ∇⃗⃗ ∧ 𝑎  

De même l’opérateur gradient peut se rencontrer sous la forme : 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 = ∇⃗⃗ 𝑓 

d) Opérateur nabla en notation complexe : 

Si on considère une OPPH 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) décrite en cartésienne : 𝑘⃗ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 

Et : 
𝜕𝐸𝑂𝑥𝑒𝑥𝑝𝑗(𝜔𝑡−𝑘⃗ .𝑂𝑀⃗⃗⃗⃗⃗⃗  ⃗)

𝜕𝑥
= −𝑗𝑘𝑥𝐸𝑂𝑥𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) 

Donc ∇⃗⃗ . 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) =

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 
.

(

 
 
𝐸𝑂𝑥𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  )

𝐸𝑂𝑦𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  )

𝐸𝑂𝑧𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ))

 
 
= −𝑗𝑘⃗ 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝𝑗(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) donc ∇⃗⃗ = −𝑗𝑘⃗  
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Document 4 : Notation complexe et aspects énergétiques 

La notation complexe implique la linéarité des grandeurs associées. Or toutes les grandeurs 

énergétique sont quadratiques (ou bilinéaires). Et on ne peut utiliser la notation complexe sans 

précaution.  

Exemple : soient 𝑓(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡) et 𝑔(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 

Alors < 𝑓(𝑡)𝑔(𝑡) >=
𝐴2

2
< cos(2𝜔𝑡 + 𝜙) + cos(𝜙) >=

𝐴2

2
cos(𝜙)  

En revanche, en utilisant la notation réelle : 𝑅𝑒 < 𝑓2(𝑡) >= 𝑅𝑒 < 𝐴2𝑒𝑗(2𝜔𝑡+𝜙 >= 0 !!!! ce qui est 

faux  

Le produit des parties réelles 𝑓2(𝑡) est différente de la partie réelle du produit 𝑓𝑓∗ ! 

Au mieux, on peut remarquer < 𝑓2(𝑡) >=
1

2
𝑅𝑒 (𝑓 × 𝑔∗) =

1

2
𝑅𝑒(𝐴2𝑒−𝑗𝜙) =

𝐴2

2
𝑐𝑜𝑠𝛷 

Ainsi la valeur moyenne du vecteur de Poynting, dans le cas d’une OemPPH, peut être obtenu 

avec : 

< 𝜋⃗ >=
1

2
𝑅𝑒 (

𝐸⃗ ∧ 𝐵∗⃗⃗ ⃗⃗ 

µ0
) 

 

 


