TSI2 Chapitre5 ELM
Chapitre 5 : Les équations de I’électromagnétisme

I L’équation de conservation de la charge

a) Démonstration

Soit un échantillon de matiére traversé par un courant d’intensité i(M,t) (associé & un vecteur densité de

courant J(M,t)). On note p(M, t) la densité volumique de charges et on postule la conservation de la charge.

» En vous inspirant de la démonstration de I’équation de conservation de la masse, effectuer un bilan

de charge et obtenir 'équation traduisant la conservation de la charge

Analyse locale

Analyse globale

Y s

e

dt (en notant i, et i les intensités des courants (volume dV = dxdydz), pendant dt, nous avons :

rentrant et sortant de V) :

Soit V le volume de notre systeme, alors pendant; Soit dq(M,t) = p(M,t)dV la charge de notre systéme
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b) Cas particulier du régime stationnaire

En régime stationnaire la charge d’un échantillon n’évolue pas et ’équation bilan conduit a divjy =0

» Démontrer la loi des neeuds en régime stationnaire
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TSI2 Chapitre5 ELM

a) Rappels : Equations de Maxwell en régime stationnaire

. . . . a
» En utilisant MG et I'équation de conservation de la charge, montrer que a—€+§= 0 et que toute

accumulation de charge « s’évanouie » treés rapidement au sein d'un conducteur de conductivité y =
108S.m™1 (la permittivité diélectrique du vide est &g & 10711F.m™1).

Dans un milieu ne présentant pas d’accumulation de charge en volume (comme dans un conducteur &
Iéquilibre), on a AV = 0. Cette équation est appelée alors équation de Laplace. Cette équation admet une

solution unique vérifiant naturellement 1’équation et les conditions aux limites de probleme.

» Une cage conductrice est reliée a la masse dont le potentiel est -
considéré nul. Donner l'expression du potentiel dans la cage W
sachant que le probleme de Laplace n’admet qu'une unique ;"“Jé
solution une fois les conditions aux limites fixées. g " #::It#__

I
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b) L’approximation des régimes quasi-stationnaires

Lorsque 'on applique un potentiel a I'extrémité d'un conducteur de longueur d alors ce potentiel met un
temps At = % pour étre ressenti a 'extrémité du conducteur (¢’ représente alors la vitesse de propagation du

potentiel dans le conducteur. Cette vitesse est de 'ordre de 108m/s).
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» Considérons un générateur de tension variable imposant alors une tension périodique T sur un barreau
conducteur de longueur d. On note ¢’ = 108m.s™1 la vitesse de propagation du champ électrique
généré par le générateur. Ecrire une inégalité permettant de négliger ce temps de propagation (et donc
de revenir & une situation quasi-identique au régime stationnaire). Proposer une limitation en

fréquence pour un circuit de TP.

c) Rappels sur l'induction dans les milieux conducteurs fermés

On observe une tension, appelée tension induite, dans les deux situations suivantes :
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Circuit fixe dans un champ magnétique variable Circuit mobile dans un champ magnétique stationnaire

Le circuit résistif est alors, dans une premiere approche, modélisable par :
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et i fixe également 'orientation de 71 avec la régle du tire bouchon.

Chapitre5

ELM

Tension induite e et courant induit i sont fléchés en convention générateur. Le sens de fléchage commun a e

» Dans chacune des situations suivantes déterminer I’expression du courant induit en sachant que la

spire présente une résistance interne de R et une surface S

v e

B (variable)

Spire immobile dans un champ

magnétique Bycos (wt) uniforme
paralléle 4 4 perpendiculaire a 4

B (constant)

Spire animée d’une vitesse U
perpendiculaire & 4 dans uni dans un
champ magnétique uniforme et

constant

B (variable)

Spire immobile dans un champ

magnétique Bycos (wt) uniforme

B (constant)

Spire en rotation autour de A4
champ magnétique

uniforme et constant.

Spire

parallele & A dans

B (constant)

d’une vitesse v

animée

un champ

magnétique uniforme et constant

B (constant)

a la vitesse

Spire en rotation

angulaire w autour d'un axe

perpendiculaire & 4 dans un champ

magnétique uniforme et constant.

1

En toute rigueur, il faut tenir compte du champ magnétique rayonné par le circuit lui-méme (traversé par un

courant d’intensité i) et responsable d’un flux propre ¢, = Li(t) ott L > 0 est I'inductance propre du circuit

[L] = [H] et donc d’une tension auto-induite egy;

La modélisation électrique d’une bobine d’inductance L, de résistance R qui n’est le siege que d’un phénomene

d’auto-induction est :

u H

> N
=

g = Ri e-:—Lﬂ

ai df

» Déterminer le flux propre d’un solénoide supposé infini et en déduire 'expression de son inductance

propre

R,

2 2
®p =N | @i(t)dS = wi(t) d'ott L = 23
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On considére maintenant une situation pour laquelle deux circuits

seront en influence mutuelle mais aussi propre : on distingue alors

ELM

ar” N 4 \\\c
flux propres et mutuelles : A ) \/
Effets inducteurs de i (t) Effets inducteurs de i,(t)
Auto-induction du circuit C; avec un flux propre Auto-induction du circuit C, avec un flux propre
¢p1 =L ¢p2 = Lyi,
Induction du circuit 2 avec un flux mutuel Induction du circuit 1 avec un flux mutuel
$1-2 = Miy $2-1 = Mi;

» Sur un tore de section carré (cotés de longueur a) sont bobinés
deux circuits comportant respectivement N; et N, spires
jointives. C; recouvre toute la surface du tore et C, recouvre
intégralement C; (on néglige 'épaisseur de la distribution de
courant qui présente également une invariance par rotation
autour de l'axe du tore). C; est parcouru par un courant
d’intensité I; > 0 et C, est parcouru par un courant d’intensité
I, > 0. Montrer que I'inductance mutuelle M et les inductances

propres Ly, L, sont telles que M? = LL,.

X B “::-E:‘.:J—\.)F vy I
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d) Equation de Maxwell-Faraday

RN,

Comme rotE,, < B alors :

» Le champ électromoteur est antisymétrique par rapport B et donc symétrique par rapport a la

distribution de courant associée

» Les lignes de champ de Kn) sont fermées et tournent localement autour de

AB(M,t)
at

E—
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a) Equation de Maxwell-Ampeére en régime variable

b) Bilan

» Remplir le tableau suivant

Tout milieu et toute Conducteur fermé en Dans le vide
fréquence ARQS
Maxwell
Gauss
Maxwell
Faraday

Maxwell Flux

Maxwell

Ampeére

On notera le couplage des champs en régime variable : on parlera donc de champ électromagnétique.

a) Bilan d’énergie locale

Considérons une distribution de charges et de courants {p,j} créant un champ électromagnétique {E, E}

toutes ces grandeurs étant reliées dans les équations de Maxwell. Et manipulons un peu ces équations :

= - = 5 = E - 5 2 2
MAE >  T0tB.E = po.E + pogo 2. E = uof. E + pogo =L

— — o = B — 2
MF.B > TotE.B=-28p=_098/2
at at

—

Avec la formule de 'analyse vectorielle : div(f /\§) =70tE.B — r0tB.E alors :

dE%/2 9B%/2
/2 9B°/

—div(E/\ﬁ) = woJ-E + Ho&o

at at
aiv(EAB) = uof B + 2 (1 -+ B
w = HoJ- ot Ho 2 2

[A—
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On notera que dans un milieu vide de charge : = —div(m)

at

b) Bilan intégrale de I’énergie

Avec le théoreme d’Ostrograski, un systeme de volume V et d’énergie électromagnétique U, ,,(t) =

JIf, vemdV vérifie :

Cw;'l—’:(t)=%ﬂfv ue,m.w:ﬂfv ab(;et’m.dv=—ffv div(ﬁ)dv—fﬂv j.Eav
dU”"(t) # .dSop — ﬂf J.EdV

Ainsi I'énergie électromagnétique d’un volume V (délimité par une surface fermée S) varie dans le temps par

la puissance échangée avec les charges contenue dans V et par un bilan de puissance électromagnétique

globalement non nul dans S.

- . dUem(t) .
Dans un milieu vide de charge, on a —22—= = — ¢ 7. dS,,;
dt
» Soit un conducteur de section S, de rayon R,de longueur [, de vi va

conductivité y siege d’un courant d’intensité I sous l'action d’un

i}k

champ électrique E uniforme et associé a la ddp V; =V, =U. On

néglige les effets de bords en supposant [ infini et le régime est

4
\j

stationnaire.
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Déterminer :

- Le champ magnétostatique

ELM

- L’expression du vecteur de Poynting

AR RN D

- La puissance rentrant a travers les parois du conducteur

[ ———



