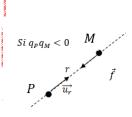
$\underline{\text{Chapitre 1}: \text{Charge \'electrique-champ \'electrostatique dans le vide}}$

 A) Propriétés de la charge : 1) Quantification de la charge 		
2) <u>Distribution volumique de charges</u>		
Toute distribution physique D est chargée en volume. Pour l'étudier, on « la découpe » en éléments de volumes mésoscopiques dV centrés autour de points P et portant chacun une charge élémentaire $dq(P)$.		
On considère une charge localisée en surface d'un échantillon. Donner l'unité de la densité surfacique σ de charge. En déduire une relation entre $\sigma(P)$ et la charge élémentaire $dq(P)$ située dans dS (élément de surface centré en P)	P dS (S)	
$ ightharpoonup$ On considère un échantillon dont les dimensions permettent de l'assimiler à un fil de section négligeable. Donner l'unité de la densité linéique λ de charge. En déduire une relation entre $\lambda(P)$ et la charge élémentaire $dq(P)$ située dans dS (élément de surface centré en P)	dl P	
 Calculer la densité volumique de charge du nuage électronique de l'hydrogène assimilé à 100pm uniformément chargée. 	une sphère de rayon	
 3) Conservation de la charge Il s'agit de l'un des postulats de l'électromagnétisme : la charge totale d'un système isolé électriquement (absence d'échange de charge par contact) reste constante au cours du temps. B) Force électrostatique et champ électrostatique 		
1) <u>Définitions</u>		


2) Propriétés de \vec{E}

 $\vec{E}(M)$ est un champ vectoriel dont l'intensité, la direction et le sens sont fonctions de la position du point M considéré.

Il sera utile d'apprécier la topographie du champ électrostatique en représentant <u>les lignes de champ électrostatique</u> c'est-à-dire les courbes tangentes au vecteur champ électrostatique.

Nous avons donc $[E] = [N.C^{-1}]$

- C) Cas où la distribution D est une charge ponctuelle
- 1) Loi de Coulomb

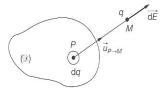
2) Champ électrostatique d'une charge ponctuelle

Dessiner quelques vecteurs « champ électrique » créé par une charge ponctuelle positive. Dessiner également quelques lignes de champ associées à cette distribution. Reprendre ce travail pour une charge ponctuelle négative

Donner la valeur de la force électrique s'exerçant entre noyau et son électron dans un atome d'hydrogène

D) Généralisation de loi de Coulomb

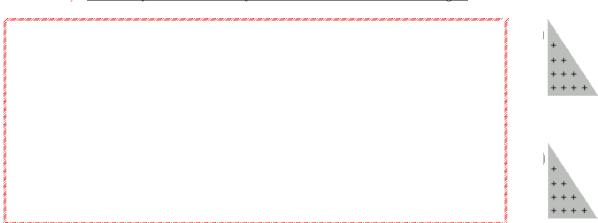
1) Champ électrostatique créé par une distribution discrète de charges

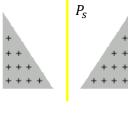

Soit une distribution de N charges ponctuelles fixes situées aux points P_i $(P_1(q_1), P_2(q_2), ..., P_N(q_N))$.

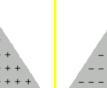
L'expérience montre que la force résultante, notée \vec{F} , qui s'exerce sur une charge d'essai q_M située en M, est la somme vectorielle des N forces exercées par chaque charge q_{Pi} supposée seule, alors :

$$\vec{F}(M) = \sum_{i=1}^{N} \vec{f}_i = \sum_{i=1}^{N} \frac{q_M q_{Pi}}{4\pi \varepsilon_0 P_i M^3} \overline{P_i M} = q_M \sum_{i=1}^{N} \frac{q_{Pi}}{4\pi \varepsilon_0 P_i M^3} \overline{P_i M}$$

L'additivité des forces se traduit alors par l'additivité des champs électrostatiques car $\vec{F}(M) = q_M \sum_{i=1}^N \overrightarrow{E_i}(M)$


2) Champ électrostatique d'une distribution continue




- E) Propriétés de symétrie
 - 1) Principe de Curie:

Ainsi, « l'effet » force électrostatique \vec{f} (et donc le champ électrostatique) possède les mêmes propriétés de symétrie (et d'antisymétrie) que la « cause » distribution de charges qui le crée.

2) Plan de symétrie et d'antisymétrie d'une distribution de charges

3) Détermination de la direction du champ électrostatique à l'aide d'arguments de symétrie

Dans la suite, on utilisera le principe de superposition :

 \triangleright Soit deux charges ponctuelles q identiques situées respectivement en P et P' symétrique par rapport à un plan vertical P_s :

Dessiner le champ électrique total en un point M quelconque.

Dessiner le champ électrique total en un point $M' = [sym(M)]_{/P_s}$

Dessiner le champ électrique total en un point $M^{\prime\prime}$ situé sur le plan P_s

 ➢ Soit deux charges ponctuelles q et −q identiques situées respectivement en P et P' symétrique par rapport à un plan vertical Pa: Dessiner le champ électrique total en un point M quelconque. Dessiner le champ électrique total en un point M' = [sym(M)]/Pa Dessiner le champ électrique total en un point M'' situé sur le plan Pa 		
Des constructions précédentes utilisant le principe de superposition, on retrouve le principe de Curie :		