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Chapitre 6 : Eléments de physique des ondes 

I- Description d’une onde  en espace illimité non 

déformant 

a) Définition d’une onde 

Un phénomène ondulatoire traduit la propagation, sans transport 

de matière, d’une grandeur physique (ici 𝑎) : observable à un 

instant 𝑡1, au point 𝑀1, l’onde est en 𝑀2  à 𝑡2 > 𝑡1:  𝑎(𝑀, 𝑡).  

b) Définition d’une surface d’onde 

Les surfaces d’onde sont définies comme les lieux où la grandeur 

𝑎(𝑀, 𝑡) présente la même valeur. 

c) Définition d’une onde sphérique 

Une onde sphérique est une onde dont les surfaces d’onde sont 

des sphères. Ce type d’onde s’observe typiquement dans le cas 

d’une propagation isotrope (invariance pour toute direction) à 

partir de la source 𝑆, ainsi 𝑎(𝑀, 𝑡) = 𝑎(𝑟, 𝑡). 

 

d) Définition d’une onde plane :  

Si les surfaces d’onde sont des plans alors l’onde est qualifiée 

d’onde plane. L’onde peut alors être décrite par une unique 

variable cartésienne (par exemple 𝑥) et le temps 𝑡 : soit 𝑎(𝑀, 𝑡) =

𝑎(𝑥, 𝑡). On remarquera que les surfaces d’ondes sont des plans ⊥ 

à la direction de propagation (ici 𝑢𝑥⃗⃗⃗⃗ ). 

e) Onde progressive 

Une onde progressive se propage sans déformation à la vitesse 

constante, notée  𝑐, dans le milieu considéré.  

La propagation d’une onde plane progressive décrite par le champ 

𝑎(𝑥, 𝑡) et progressant à la vitesse 𝑐 dans le sens 𝑂𝑥+ est  décrite 

par 𝑎(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑐
) où 𝑓 est une fonction définissant la forme 

de l’onde émise. Pour 𝑎(𝑥, 𝑡) = 𝑔 (𝑡 +
𝑥

𝑐
) on a affaire à une onde 

progressive se propageant à la célérité 𝑐 dans le sens 𝑂𝑥−. 

 

 

 

 

 

Notion d’onde plane 

On peut créer une onde localement plane en imposant une 

vibration sur un tapis par exemple : 

 

Autre exemple d’ondes planes : les ondes acoustiques se 

propageant dans un tuyau sonore : 

 

La grandeur qui se propage ici est la surpression acoustique (de 

l’ordre de 1/100 de Pa) 

De l’onde sphérique à l’onde plane 

Cas d’une source ponctuelle émettant de manière isotrope 

(invariance 𝛳 et 𝜑 en repérage sphérique) : Lorsque le rapport 
𝑑

𝐷
 

de l’extension 𝑑 de la zone d’observation et de la distance 

moyenne 𝐷 à la source tend vers zéro, les surfaces d’onde, ont 

l’allure de plans : on retrouve localement des ondes planes. 

 

L’onde plane apparaît donc comme le motif permet de décrire 

localement n’importe quel type d’onde.  

La fonction retard : 

Mathématiquement,  𝑓(𝑡) et 𝑓(𝑡 − 𝜏) qui traduisent les mêmes 

variations mais avec un retard de 𝜏. Par exemple : 
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f) Onde plane progressive harmonique  

On va s’intéresser à une famille de solutions particulières d’ondes 

planes progressives 𝑎(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑐
) + 𝑔 (𝑡 +

𝑥

𝑐
) où 𝑓 et 𝑔 

traduisent des variations sinusoïdales dans l’espace et dans le 

temps de 𝑎 : c’est l’onde plane progressive harmonique. 

Exemple : 𝑎(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑐
) = 𝐴𝑐𝑜𝑠 (𝜔 (𝑡 −

𝑥

𝑐
) + 𝜙) 

𝑎(𝑥, 𝑡) =  𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜙) avec 𝑘 =
𝜔

𝑐
> 0 

Cette solution fait apparaître une double périodicité : 

- Une périodicité temporelle, notée  [𝑇] = [𝑠], reliée à la pulsation 

temporelle 𝜔 =
2𝜋

𝑇
 

- Une périodicité spatiale, notée 𝜆, [𝜆] = [𝑚], appelée longueur 

d’onde et reliée à la pulsation spatiale 𝑘, appelée nombre d’onde 

𝑘 =
2𝜋

𝜆
.  

Le nombre d’onde 𝑘 et la pulsation temporelle 𝜔 sont reliés par : 

𝑘 =
𝜔

𝑐
, cette relation implique également que 𝜆 = 𝑐𝑇. 

II- Description d’une onde plane progressive 

harmonique en espace « clos » 

 

a) Onde plane stationnaire en espace semi-clos 

Considérons une onde plane, progressive, harmonique, incidente 

telle que 𝑎𝑖(𝑥, 𝑡) = 𝐴𝑖𝑐𝑜𝑠(𝜔𝑡 + 𝑘𝑥) et supposons que la présence 

d’un obstacle en 𝑥 = 0 soit à l’origine d’une onde réfléchie 

𝑎𝑟(𝑥, 𝑡) = 𝐴𝑟𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜙) et impose ∀𝑡 une vibration totale 

nulle en 𝑥 = 0. 

 

Ainsi : 𝑎𝑖(0, 𝑡) + 𝑎𝑟(0, 𝑡) = 𝐴𝑖𝑐𝑜𝑠(𝜔𝑡) + 𝐴𝑟𝑐𝑜𝑠(𝜔𝑡 + 𝜙) = 0 et donc 

𝐴𝑖 = −𝐴𝑟 et 𝜙 = 0 d’où une vibration totale décrite par : 

𝑎(𝑥, 𝑡) = 𝐴𝑖(𝑐𝑜𝑠(𝜔𝑡 + 𝑘𝑥) − 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥)) 

𝑎(𝑥, 𝑡) = −2𝐴𝑖 sin(𝑘𝑥) sin(𝜔𝑡) 

 

 

 

 

 

Il est donc logique qu’avec le temps de propagation, l’état de 

vibration de chaque point soit celui qui était au niveau de la 

source avec un décalage temporel décrit par la fonction 𝑓(𝑡 − 𝜏). 

Considérons l’émission d’une impulsion en 𝑥 = 0 dont le profil est 

défini par la fonction 𝑓(𝑡). Ainsi 𝑎(0, 𝑡) = 𝑓(𝑡) 

 

 

Avec 𝑎(0, 𝑡0) = 𝐴 = 𝑓(𝑡0), on retrouve 𝑎(𝑥𝐴, 𝑡) = 𝑓(𝑡0) = 𝑓(𝑡 −
𝑥𝐴

𝑐
) 

Représentations d’une OPH 
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Avec ce découplage entre les variables 𝑡 et 𝑥, l’onde est en 

apparence statique, on parle d’onde stationnaire. 

La réflexion totale d’une OPPH incidente (de pulsation 𝜔, de 

nombre d’onde 𝑘) sur un obstacle conduit à une onde 𝑎(𝑥, 𝑡) 

stationnaire définie sous la forme d’une fonction de variables 

séparées : 𝑎(𝑥, 𝑡) = 𝑓(𝑡) × 𝑔(𝑥) conduisant pour 𝑓(𝑡) et 𝑔(𝑥) à des 

fonctions trigonométriques et telles que : 

𝑎(𝑥, 𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜓)𝑠𝑖𝑛 (𝑘𝑥 + 𝜑) 

( 𝛹 et 𝜑 sont des constantes) 

b) Résonances dans une cavité à une dimension 

Une cavité de dimension 𝐿 est le siège d’ondes stationnaires 

présentant une résonance en amplitude si 𝐿 = 𝑛
𝜆

2
 soit pour des 

pulsations  𝜔 =
𝑛𝜋𝑐

𝐿
 (avec 𝑛 ∈ ℕ∗) 

III- Solution et équation de propagation de d’Alembert  

 

a) Equation de d’Alembert 

Les lois physiques décrivant la propagation  sans déformation 

d’une grandeur physique scalaire 𝑎(𝑀, 𝑡) conduisent à l’équation 

linéaire de d’Alembert :    

∆𝑎 −
1

𝑐2
𝜕2𝑎

𝜕𝑡2
= 0 

Dans le cas d’une onde plane progressive 𝑎(𝑥, 𝑡) l’équation de 

d’Alembert devient : 
𝜕𝑎2

𝜕𝑥2
−

1

𝑐2

𝜕𝑎2

𝜕𝑡2
= 0.  

b) Retour sur l’onde plane progressive harmonique 

L’analyse de Fourier justifie l’étude du cas particulier où 𝑓 est 

une fonction sinusoïdale.  

Etudier dans une direction 𝑢⃗  quelconque, l’OPPH s’écrit : 

 𝑎(𝑀, 𝑡) = 𝐴𝑐𝑜𝑠 (𝜔 (𝑡 −
𝑢⃗⃗ .𝑂𝑀⃗⃗⃗⃗⃗⃗  ⃗

𝑐
) + 𝜙) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜙)  

où apparaît le vecteur d’onde 𝑘⃗ = 𝑘𝑢⃗ =
𝜔

𝑐
𝑢⃗  

𝑘⃗  est, par définition, suivant la direction de propagation et est 

perpendiculaire aux surfaces d’onde correspondant aussi à des 

surfaces équiphases. 

La linéarité de l’équation de d’Alembert permet d’utiliser la 

notation complexe dans le cas des OPPH,  𝑎(𝑀, 𝑡) s’écrit alors : 

𝑎(𝑀, 𝑡) = 𝐴𝑒𝑗(𝜔𝑡−𝑘⃗
 .𝑂𝑀⃗⃗⃗⃗⃗⃗  ⃗+𝜙) = 𝐴𝑒𝑗(𝜔𝑡−𝑘⃗

 .𝑂𝑀⃗⃗⃗⃗⃗⃗  ⃗) 

Cette écriture est utilisable pour toute équation d’onde linéaire 

et constitue donc un outil pour sa résolution. 

 

 

 

Etude des ondes stationnaires 

- L’amplitude de l’oscillation temporelle régit par 𝐴(𝑥) =

−2𝐴−𝑠𝑖𝑛 (𝑘𝑥) de telle sorte que tous les points vibrent en 

phase ou en opposition de phase 

- La présence de nœuds de vibration c’est-à-dire de positions 

𝑥𝑛 d’amplitude constamment nulle. 𝑎(𝑥𝑛 , 𝑡) = 0 soit 𝑘𝑥𝑛 = 𝑛𝜋 

et 𝑥𝑛 =
𝑛𝜆

2
 avec 𝑛 ∈ ℕ. D’autres positions 𝑥𝑣 ont une 

amplitude de vibration maximale et sont appelés ventre de 

vibration 𝑘𝑥𝑣 =
(2𝑛+1)𝜋

2
 soit 𝑥𝑣 =

𝑛𝜆

2
+

𝜆

4
 

Etude d’une cavité résonante 

Soit un milieu délimité entre 𝑥 = 0 et 𝑥 = 𝐿 et imposant 𝑎(0, 𝑡) =

𝑎(𝐿, 𝑡) = 0. La propagation d’une 𝑂𝑃𝐻+ 𝑎(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 

émise continûment par une source entraîne la superposition de 

deux systèmes d’ondes stationnaires. Pour assurer la 

superposition d’ 𝑂𝑃𝐻+ en phase en 𝑥 = 0 (𝑎1(𝑥 = 0, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡),  

𝑎2(𝑥 = 0, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 2𝑘𝐿), 𝑎3(𝑥 = 0, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 4𝑘𝐿)…), 

alors 𝑘𝐿 = 𝑛𝜋 soit 𝐿 =
𝑛𝜆

2
 

 

Solution de l’équation de d’Alembert : 

On peut vérifier qu’une onde progressive décrite par 𝑎(𝑥, 𝑡) =

𝑓 (𝑡 −
𝑥

𝑐
) est bien solution de cette équation.  Posons 𝑢 = 𝑡 −

𝑥

𝑐
, on 

peut alors remarquer que :  

{
 

 
𝜕𝑎(𝑥, 𝑡)

𝜕𝑥
=
𝑑𝑎(𝑥, 𝑡)

𝑑𝑢

𝜕𝑢

𝜕𝑥
= −

1

𝑐

𝑑𝑓

𝑑𝑢
   𝑒𝑡 

𝜕𝑎2

𝜕𝑥2
=
1

𝑐2
𝑑2𝑓

𝑑𝑢2
 

𝜕𝑎(𝑥, 𝑡)

𝜕𝑡
=
𝑑𝑎(𝑥, 𝑡)

𝑑𝑢

𝜕𝑢

𝜕𝑡
=
𝑑𝑓

𝑑𝑢
 𝑒𝑡 

𝜕𝑎2

𝜕𝑡2
=
𝑑2𝑓

𝑑𝑢2

→
𝜕𝑎2

𝜕𝑥2
−
1

𝑐2
𝜕𝑎2

𝜕𝑡2

= 0 

Notation complexe 

Il s’agit ici d’utiliser les propriétés de linéarité de l’équation de 

d’Alembert (et son indépendance vis-à-vis de l’instant où l’on 

applique la loi) ainsi 𝑎(𝑀, 𝑡) peut être vue comme la CL de deux 

OPPH : 

𝑎(𝑀, 𝑡) = 𝑎(𝑀, 𝑡) + 𝑗𝑎 (𝑀, 𝑡 −
𝑇

4
) 

𝑎(𝑀, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) + 𝑗𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥) = 𝐴𝑒𝑗(𝜔𝑡−𝑘𝑥) 

La notation complexe permet une simplification des calculs : 

𝜕𝑎(𝑀,𝑡)

𝜕𝑡
= 𝑗𝜔𝑎(𝑀, 𝑡) et en cartésiennes 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑎(𝑀, 𝑡) = −𝑗𝑘⃗ 𝑎(𝑀, 𝑡) 

Cette écriture permet aussi de décrire le cas d’ondes atténuées 

et déformées en supposant par exemple 𝜔 > 0 et 𝑘 = 𝑘′ − 𝑗𝑘′′.  

Dans la direction 𝑂𝑥 alors  𝑎(𝑀, 𝑡) = 𝐴𝑒−𝑘
′′𝑥𝑒𝑗(𝜔𝑡−𝑘

′𝑥) avec 𝑘′ et 𝑘 ′′ 

que l’on trouve en injectant 𝑎(𝑀, 𝑡) dans l’équation de propagation. 

 

 

 


