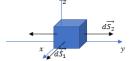
B61	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	pothèses d'application des résultats 1 10 6,7			
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée			3.0	#DIV/0!
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	- 4 #DIV/0!		
Rédiger proprement ses démarches au tableau	NE			


	+	-		
ajustement		*	note	#DIV/0!

Remarques :retour de vacances compliqué pour traiter l'opérateur de divergence....

Soit $\vec{a}(M)$ un champ de vecteur.

- 1) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface ouverte S.
- 2) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface fermée S.
- 3) Rappeler la définition de la divergence de \vec{a} ainsi que le théorème d'Ostrogorski
- 4) Donner la définition de la divergence de \vec{a} en repérage cartésien

Soit $\vec{a} = 2x^2 \overrightarrow{u_v}$.

Le cube ci-dessous est d'arrête de longueur d

- 1) Calculer le flux de \vec{a} à travers S_1
- 2) Calculer le flux de \vec{a} à travers S_2
- 3) Effectuer un bilan de flux.
- Calculer divā

Exercice : Divergence

Soit un champ vectoriel $\vec{a}(x, y, z) = \begin{pmatrix} \vec{a}_y(x, y, z) \end{pmatrix}$ en repérage cartésien $(a_z(x,y,z))$

- 1) Donner l'expression du bilan de flux élémentaire $\sum_{i=1}^n \vec{d} \cdot d\vec{S_i}$ à travers une surface fermée élémentaire délimitant le volume $\,dV=dxdydz.$ On ferra surface fermee elementaire delimitant le volume av = axayaz. Or apparaître les dérivées partielles $\frac{\partial a_x}{\partial x}, \frac{\partial a_y}{\partial y}, \frac{\partial a_z}{\partial z}$ 2) En déduire l'expression de $div\vec{a}$ sachant que $\sum_{i=1}^{n} \vec{d}. d\vec{S_i} = div\vec{a} dV$

Le cours :

- 1) $\phi = \iint_{S} \vec{a} \cdot d\vec{S}$
- 2) $\phi = \oiint \vec{a}. d\overrightarrow{S_{ext}}$
- 3) $\sum \vec{d} \cdot \overrightarrow{dS_{exti}} = div \vec{d} dV \leftrightarrow \oiint \vec{d} \cdot d\overrightarrow{S_{ext}} = \iiint_{V}^{\Box} div \vec{d} dV$
- 4) $div\vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$

Soit $\vec{a} = 2x^2 \overrightarrow{u_y}$.

- 1) Flux nul
- 2) $\phi = \frac{2}{3}d^4$
- 3) Bilan de flux nul
- 4) $div\vec{a} = 0$

B62	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2	10 8,3		
Connaître les hypothèses d'application des résultats	2			
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	2.0	#DIV/0!
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	iser :Savoir mener les calculs analytiques, numériques, résolutions d'équations 1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	— 4 #DIV/0!		
Rédiger proprement ses démarches au tableau	NE			

	+	-		
ajustement		*	note	#DIV/0!

Remarques : Retour de vacances compliqué pour traiter des calculs de débit

Ежегоісе :

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau.

- 1) Quels sont les débits massiques associés ?
- 2) Quel est le taux de variation temporel de la masse de ce volume de contrôle ?
- 3) Quelle est la variation de masse du volume de contrôle au bout de 10s

Exercice

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{J} . On suppose également que \vec{J} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

- 1) Soit j_1 la valeur du vecteur densité au niveau de la surface S_1 et j_2 sa valeur à la surface S_2 . Donner une relation entre ces paramètres.
- 2) $S_1 = 10c m^2$, $j_1 = 5kg \cdot m^{-2}s^{-1}$ donner la valeur du débit massique

Evercice :

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\overline{u_{\vec{p}}}}{r}.$

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV = rdrd\theta dz$
- En déduire l'expression de diva

Exercice

On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\overrightarrow{u_r}}{r^2}$.

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV=r^2sin\theta drd\theta d\phi$
- En déduire l'expression de diva

Exercice

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau.

- 1) $D_{me} = 10kg.s^{-1}, D_{ms} = 5kg.s^{-1}$
- $2) \frac{dm}{dt} = 5kg/s$
- 3) $\Delta m = 50kg$

Ехегсісе

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette demière.

- 1) $j_1S_1 = j_2S_2$.
- 2) $D_m = 5 \times 10^{-2} kg/s$

Exercice

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\overline{u}\vec{\rho}}{r}$.

- 1) $d\Phi = 0$
- 2) $div \vec{a} = 0$

Exercice

On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\vec{u_r}}{c^2}$.

- 1) $d\Phi = 0$
- 2) $div\vec{a} = 0$

Nom : Prénom: colle du:	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours				
Connaître les hypothèses d'application des résultats	2	10	10,0	#DIV/0!
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	3,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4	#DIV/0!	
Rédiger proprement ses démarches au tableau	NE	4		

	+	-		
ajustement		*	note	#DIV/0!

Remarques :