B51	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10 10,0		
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			#DIV/0!
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	6.0	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	2	6	6,0	
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4	#DIV/0!	
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement			note	#DIV/0!

Remarques : reprsie pas simple sur les notions de débit

Exercice :

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau

- 1) Quels sont les débits massiques associés ?
- 2) Quel est le taux de variation temporel de la masse de ce volume de contrôle ?
- 3) Quelle est la variation de masse du volume de contrôle au bout de 10s

Exercice

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

- 1) Soit j_1 la valeur du vecteur densité au niveau de la surface S_1 et j_2 sa valeur à la surface S_2 . Donner une relation entre ces paramètres.
- 2) $S_1 = 10c\,m^2, j_1 = 5kg\,.m^{-2}s^{-1}\,\underline{\rm donner}$ la valeur du débit massique

Exercice :

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\overline{ug}}{r}$.

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV=rdrd\theta dz$
- En déduire l'expression de diva

Exercice:

On considère un champ décrit en repérage sphérique par $\vec{d} = \frac{\vec{u_T}}{r^2}$

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV=r^2sin\theta dr d\theta \, d\phi$
- En déduire l'expression de diva

Exercic

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau.

1)
$$D_{ms} = 10kg.s^{-1}, D_{ms} = 5kg.s^{-1}$$

$$\frac{dm}{dt} = 5kg/s$$

3)
$$\Delta m = 50kg$$

Exercice

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

1)
$$j_1S_1 = j_2S_2$$
.

$$2) \quad D_m = 5 \times 10^{-3} kg/s$$

Exercic

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\overline{ug}}{r}$.

1)
$$d\Phi = 0$$

Exercic

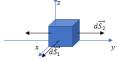
On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\overline{u_r}}{r^2}$.

1)
$$d\Phi = 0$$

2)
$$div\vec{a} = 0$$

B52	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10 8,3		
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE		3,0	#DIV/0!
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6		
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4	#DI) ((OI	
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement		*	note	#DIV/0!


Remarques : difficile reprise sur les notions de flux

Le cours :

Soit $\vec{a}(M)$ un champ de vecteur.

- 1) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface ouverte S.
- 2) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface fermée S.
- 3) Rappeler la définition de la divergence de \vec{a} ainsi que le théorème d'Ostrogorski
- 4) Donner la définition de la divergence de \vec{a} en repérage cartésien

Soit $\vec{a} = 2x^2 \overrightarrow{u_y}$.

Le cube ci-dessous est d'arrête de longueur d

- 1) Calculer le flux de \vec{a} à travers S_1
- 2) Calculer le flux de \vec{a} à travers S_2
- Effectuer un bilan de flux.
- Calculer diva

Soit un champ vectoriel $\vec{a}(x,y,z)=\begin{pmatrix} a_\chi(x,y,z)\\ a_\chi(x,y,z) \end{pmatrix}$ en repérage oartésien $\langle a_z(x, y, z) \rangle$

- 1) Donner l'expression du bilan de flux élémentaire $\sum_{i=1}^{n} \vec{a} \cdot d\vec{S_i}$ à travers une surface fermée élémentaire délimitant le volume dV = dxdydz. On ferra apparaître les dérivées partielles $\frac{\partial a_x}{\partial x}$, $\frac{\partial a_y}{\partial y}$, $\frac{\partial a_z}{\partial z}$
- 2) En déduire l'expression de $div\vec{a}$ sachant que $\Sigma [\vec{a}, d\vec{S}] = div\vec{a}dV$

- 1) $\phi = \iint_{S}^{\mathbb{H}} \vec{a} \cdot d\vec{S}$
- 2) $\phi = \iint \vec{a} \cdot d \overrightarrow{S_{ext}}$
- 3) $\sum \vec{a} \cdot \vec{dS_{\text{ext}}} = dv \vec{a} dV \leftrightarrow \oint \vec{a} \cdot \vec{dS_{\text{ext}}} = \iiint_{V}^{\square} dv \vec{a} dV$ 4) $dv \vec{a} = \frac{\partial a_{x}}{\partial x} + \frac{\partial a_{y}}{\partial y} + \frac{\partial a_{x}}{\partial z}$

Soit $\vec{a} = 2x^2 \overrightarrow{u_v}$.

- 1) Flux nul
- 2) $\phi = \frac{2}{3}d^4$
- 3) Bilan de flux nul
- 4) $div\vec{a} = 0$

B53	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10 8,3		
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	6.0	16,5
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	2	0	6,0	
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	1	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

ainstement * note 16		+	-		
a)usternent	ajustement		*	note	16

Remarques : Ok pour la cinétique, plus en difficulté sur Lewis

Maxime : Exercice 1 : Chimie

L'oxygène et le souffre appartiennent à la famille des chalcogènes située à l'avant dernière colonne du tableau périodique.

- Donner le numéro atomique de ces deux éléments Donner la représentation de Lewis de oes deux
- Représenter les molécules $H_2\mathcal{O}$, $H_2\mathcal{S}$
- On donne les températures de changement d'état cidessous, expliquez :

Exercice 2 : Quelques composés azotés

L'azote se retrouve sous la forme de nitrate d'ammonium NH_4NO_2 dans les engrais.

- 1) Le nitrate d'ammonium est préparé par la réaction entre l'acide nitrique HNO_2 et l'ammoniac NH_3 . Ecrire la réaction
- 2) Ecrire le schéma de Lewis de l'acide nitrique en veillant à respecter la règle de l'octet 3) Donner la formule de Lewis de l'ammoniac

Le protoxyde d'azote N_2O , connu pour ses propriété enivrantes (d'où son appellation de gaz

4) Donner la représentation de Lewis de $N_2\mathcal{O}$ (Les azotes sont voisins)

Exercice : Cinétique

Dans la suite, on notera $[A]_0$ la concentration initiale du résotif A et la résotion envisagée

$A \rightarrow produit$

Donner l'expression de [A](t) dans les cas suivants

- ➤ Ordre zéro par rapport à A
- ➤ Ordre un par rapport à A
- ➤ Ordre deux par rapport à A

- O: 1s², 2s², 2p⁴ S: 1s², 2s², 2p⁶, 3s², 3p⁴
- On a un effet de la liaison. H qui est manifeste dans le cas de l'eau et un effet de polarisabilité des molécules qui augmente avec leur teille

➤ Ordre zéro par rapport à A

Si $v(t) = -\frac{d[A]_t}{dt} = k[A]_t^0 = k$

Alors : $[A]_t = [A]_0 - kt$

Et le temps de demi-réaction $t_{1/2}$ pour lequel $[A]_{t_{1/2}} = \frac{|A|_0}{z} \text{ wérifie } : t_{1/2} = \frac{|A|_0}{zk}$

➤ Ordre un par rapport à A

Si $v(t) = -\frac{d[A]_2}{dt} = k[A]_2^2 = k[A]_2$

Alors: $[A]_t = [A]_0 \exp\left(-\frac{t}{\tau}\right)$ avec $\tau = \frac{1}{\lambda}$

 $\mathbf{E}\,\mathbf{t}:t_{1/2}=\tfrac{\ln 2}{h}$

➤ Ordre deux par rapport à A

Si $v(t) = -\frac{d[A]_t}{dt} = k[A]_t^2$

Alors $: \frac{1}{|\mathbf{A}|_2} - \frac{1}{|\mathbf{A}|_0} = k\varepsilon \, \mathbf{E} \, \mathbf{t} : \varepsilon_{1/2} = \frac{1}{|\mathbf{A}|_0 k}$