B41	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1 10			
Savoir appliquer directement son cours sur un exemple simple	1			#DIV/0!
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1	6	2.0	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4 #50.7/01		
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement		*	note	#DIV/0!

Remarques : Reprise éncessaire de la totalité des notions de flux : dure reprise!

Soit $\vec{a}(M)$ un champ de vecteur.

- 1) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface ouverte S.
- 2) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface fermée S.
- 3) Rappeler la définition de la divergence de \vec{a} ainsi que le théorème d'Ostrogorski
- 4) Donner la définition de la divergence de \vec{a} en repérage cartésien

Soit $\vec{a} = 2x^2 \overrightarrow{u_y}$.

Le cube ci-dessous est d'arrête de longueur d

- 1) Calculer le flux de \vec{a} à travers S_1
- 2) Calculer le flux de \vec{a} à travers S_2
- 3) Effectuer un bilan de flux.
- 4) Calculer diva

Soit un champ vectoriel $\vec{a}(x,y,z) = \begin{pmatrix} a_{\chi}(x,y,z) \\ a_{y}(x,y,z) \end{pmatrix}$ en repérage cartésien $a_{z}(x,y,z)$

- 1) Donner l'expression du bilan de flux élémentaire $\sum [\vec{a}.\vec{a}.\vec{dS_i}$ à travers une surface fermée élémentaire délimitant le volume dV = dxdydz. On ferra apparaître les dérivées partielles $\frac{\partial a_x}{\partial x}, \frac{\partial a_y}{\partial y}, \frac{\partial a_z}{\partial z}$
- 2) En déduire l'expression de $div\vec{a}$ sachant que $\sum_{i=1}^{n} \vec{a} \cdot d\vec{S_i} = div\vec{a}dV$

Le cours :

- 1) $\phi = \iint_{S}^{\mathbb{R}^{d}} \vec{a} \cdot d\vec{S}$
- 2) $\phi = \oiint \vec{a}. d\overrightarrow{S_{ext}}$
- 3) $\sum \vec{a} \cdot \vec{dS_{ext}} = \vec{atv} \vec{a} dV \leftrightarrow \oint \vec{a} \cdot \vec{dS_{ext}} = \iiint_{V}^{i,j} \vec{dtv} \vec{a} dV$ 4) $\vec{dtv} \vec{a} = \frac{\partial a_{x}}{\partial x} + \frac{\partial a_{y}}{\partial y} + \frac{\partial a_{z}}{\partial z}$

Soit $\vec{a} = 2x^2 \overrightarrow{u_v}$.

- 1) Flux nul
- 2) $\phi = \frac{2}{3}d^4$
- 3) Bilan de flux nul
- 4) $div\vec{a} = 0$

B42	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	ître les hypothèses d'application des résultats 2 10			
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée		6	2.0	#DIV/0!
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations			3,0	
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4 #DIV/0!		
Rédiger proprement ses démarches au tableau	NE			

	+	-		
ajustement			note	#DIV/0!

Remarques : Travail sur le devoir de cours

В43	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1	10	3,3	
Savoir appliquer directement son cours sur un exemple simple	0			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			#DIV/0!
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	0.0	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	:Savoir mener les calculs analytiques, numériques, résolutions d'équations 0		0,0	
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4 #50.7701		
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement	*		note	#DIV/0!
	,			

Remarques : Attention aux conversion d'unité (reprise complète de la notion de débit massique et volumique)

Exercice

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau.

- 1) Quels sont les débits massiques associés ?
- 2) Quel est le taux de variation temporel de la masse de ce volume de contrôle ?
- 3) Quelle est la variation de masse du volume de contrôle au bout de 10s

Exercice

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

- 1) Soit j_1 la valeur du vecteur densité au niveau de la surface S_1 et j_2 sa valeur à la surface S_2 . Donner une relation entre ces paramètres.
- 2) $S_1 = 10c\,m^2, j_1 = 5kg\,.\,m^{-2}s^{-1}\,\mathrm{donner}$ la valeur du débit massique

Exercice

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\overrightarrow{ug}}{r}$

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV=rdrd\theta dz$
- En déduire l'expression de diva

Exercice

On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\overrightarrow{u_r}}{-\tau}$.

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV=r^2sin\theta dr d\theta d\phi$
- En déduire l'expression de diva

Exercice :

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs}=5L.s^{-1}$. Le fluide est de l'eau.

1)
$$D_{ms} = 10kg.s^{-1}, D_{ms} = 5kg.s^{-1}$$

$$2) \frac{dm}{dt} = 5kg/s$$

3)
$$\Delta m = 50kg$$

Exercice :

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

1)
$$j_1S_1 = j_2S_2$$
.

2)
$$D_m = 5 \times 10^{-3} kg/s$$

Exercice

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\vec{u}\vec{g}}{\vec{u}}$.

2)
$$div\vec{a} = 0$$

Exercice

On considère un champ décrit en repérage sphérique par $\vec{a}=rac{\overrightarrow{u_r}}{r^2}$

1)
$$d\Phi = 0$$

2)
$$div\vec{a} = 0$$