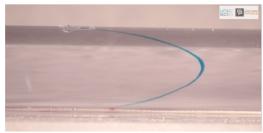
B21	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2	10	10,0	
Connaître les hypothèses d'application des résultats	2			
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	6,0	#DIV/0!
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	2			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	2			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4	#DIV/0!	
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement			note	#DIV/0!

Remarques : colle pas simple mais comprise en étant accompagné

Exercice : Loi de Poiseuille


Un fluide visqueux de coefficient de viscosité dynamique η est compris dans un cylindre d'exe θz , de rayon R. On se place dans les coordonnées cylindriques (r,θ,z) .

On suppose l'écoulement unidimensionnel : $\vec{v}=v_z(r,\theta,z,t)\overrightarrow{u_z}$ On suppose que le problème est à symétrie de révolution : $\frac{\partial}{\partial \theta}=0$.

On suppose l'écoulement stationnaire : $\frac{\partial}{\partial t} = 0$

On suppose le fluide incompressible.

On néglige la pesanteur et la pression dans le fluide ne dépend que de z.

 Montrer que le champ des vitesses ne dépend pas de z puis justifier le mouvement rectiligne uniforme des particules de fluide en mouvement.

On donne l'expression de la force surfacique de viscosité en cylindrique $d\overline{k_\eta^2}$ s'exerçant sur une surface dS d'une particule de fluide : $d\overline{k_\eta^2} = \eta \frac{\partial v_g}{\partial x} dS\overline{u_x^2}$

- 2) A l'aide d'une étude dynamique, montrer que le champ des pression P est tel que P(z) est une fonction affine.
- 3) En déduire une expression du champ des vitesses $v_x(r)$ permettant d'interpréter la photographie oi-dessus.

- 1) $\vec{v} = v_x(r,z) \overrightarrow{u_x} \underbrace{\text{aveo}}_{\theta}$ les hypothèses $\frac{\partial}{\partial t} = \frac{\partial}{\partial \theta} = 0$ Si on rajoute l'hypothèse incompressible alors $div\vec{v} = 0$ ce qui implique $\vec{v} = v_x(r) \overrightarrow{u_x}$.
- Le mouvement rectiligne des particules de fluide n'est pas accéléré

 2) La compensation des deux forces (pression et de viscosité) donne :
- 2) La compensación des deux forces (presaon ec de viscosice) don

On a alors:

$$\frac{dP(z)}{dz} = \frac{2\eta}{r} \frac{dv(r)}{dr}$$

Il s'agit de l'égalité entre deux fonctions dépendant de variables différentes : l'égalité implique que ces quantités sont constantes.

L'application de Bernoulli impose à la pression de diminuer, donc $\frac{dP(x)}{dx}<0$.

3) L'intégration donne alors :

$$\frac{2\eta}{r}\frac{dv(r)}{dr} = -\frac{|\Delta P|}{L}$$

$$v(r) = -\frac{|\Delta P|}{4\eta L}r^2 + Cte$$

La nullité de la vitesse sur la conduite donne alors

$$v(r) = \frac{|\Delta P|}{4nL}(R^2 - r^2)$$

B22	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1	10 5	5,0	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	3,0	#DIV/0!
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4	#DIV//OI	
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement		*	note	#DIV/0!

Remarques : reprise de l'équation bilan

Exercice

On considère un écoulement stationnaire décrit en repérage cartésien définit par (k

$$\vec{v}(x,y) = kx\overrightarrow{u_x} - ky\overrightarrow{u_y}$$

- 1) Cet écoulement est-il incompressible ?
- Soit d OM un déplacement le long d'une ligne de courant. Que vaut v ∧ dOM?
- Donner l'équation des lignes de champ et tracer l'allure de quelques lignes de champ.

Exercice

- 1) Calculer la divergence de l'écoulement suivant décrit en cartésien (v_0 , a constantes) : $\vec{v}=v_o(1+\frac{\pi}{a})\overline{u}_x^+$
- 2) Calculer la divergence de l'écoulement vortex décrit en cylindrique suivant (k est une constante) : $\vec{v} = \frac{K}{r} \frac{u_{\theta}}{u_{\theta}}$

Exercice : Equation Bila

Soit une clause de volume V contenant un nombre donné d'élèves, une porte de auface S_1 par laquelle les élèves peuvent rentrer et une porte de auface S_1 par laquelle les élèves peuvent zortir. Notons n(M) la densaté moyenne d'élèves et $\tilde{v}(M)$ la vitesse des élèves autour d'un point M quélonque de la clause.

- Etablir l'équation de conservation du nombre d'élèves sous forme intégrale puis sous forme locale.
- Faire une analogie avec un bilan de masse.

Exercice : Ecoulemen

On considère un écoulement homogène et stationnaire d'un fluide incompressable dans une conduite cylindrique d'axe θx . Oct écoulement est décrit en repérage cylindrique et possède une symétrie de révolution autour de l'axe θx . Le champ des viteases \vec{v} ne possède pas de composante rachale et ortho-rachale. Justifier que $\vec{v}(r,\theta,x,c) = (c_r/r)\vec{u}_x^2$.

Exercice :

On a $\text{div} \vec{v} = k - k = 0 => \text{\'e} \text{coulement incompressible}$

$$\frac{dx}{v_x} = \frac{dy}{v_y} \Longrightarrow d\ln(xy) = 0 \Longrightarrow y = \frac{k}{x}$$

On a des hyperboles

Exercice :

- 1) $div \vec{a} = \frac{v_0}{c}$
- 2) $div\vec{a} = 0$

Exercice: Equation Bilan

Bilan intégral :

$$\begin{split} N(t+dt) - N(t) &= -\iint_{S_e}^{\Box} n\vec{v}. d\vec{S}_e^{\dagger} dt - \iint_{S_g}^{\Box} n\vec{v}. d\vec{S}_g^{\dagger} dt = - \oiint n\vec{v}. d\vec{S} dt \\ &= - \oiint n\vec{v}. d\vec{S} \end{split}$$

En local

$$\frac{dN}{dt} = \frac{d}{dt} \iiint_V^{\square} n dV = \iiint_V^{\square} \frac{\partial n}{\partial t} dV = - \iiint_{S_\theta}^{\square} n \vec{v}. d\vec{S}_\theta^+ - \iiint_{S_\theta}^{\square} n \vec{v}. d\vec{S}_s^+ = - \oiint n \vec{v}. d\vec{S} = - \oiint_V^{\square} div(n \vec{v}). dV$$

$$\iiint_{V}^{i,j} \frac{\partial n}{\partial t} dV = -\iiint_{V}^{i,j} div(n\vec{v}), dV \qquad \frac{\partial n}{\partial t} = -div(n\vec{v})$$

$$\iiint_{V} \frac{dV}{\partial t} dV = -\iiint_{V} div(n\vec{v}) \cdot dV$$

$$\frac{dV}{\partial t} = -div(n\vec{v}) \cdot dV$$
Exercice: Ecoulement

Hypothèse stationnaire : $\vec{v}(r,\theta,z,t) = v_x(r,\theta,z)\overrightarrow{u_x}$

Symétrie axiale
$$: \overrightarrow{v}(r\,,\theta,z,t) = v_{z}(r,z)\overrightarrow{u_{z}}$$

Le fluide est incompressible :
$$div \vec{v} = \frac{\partial v_z}{\partial z} = 0$$

$$\vec{v}(r, \theta, z, t) = v_z(r) \overrightarrow{u_z}$$

В23	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1	10	3,3	#DIV/0!
Connaître les hypothèses d'application des résultats	1			
Savoir appliquer directement son cours sur un exemple simple	0			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	3,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE		//DI) //OI	
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	

	+	-		
ajustement			note	#DIV/0!

Remarques : Ok pour la cinétique, plus compliqué pour la chimie quantique

L'oxygène et le souffre appartiennent à la famille des chalcogènes située à l'avant dernière colonne du tableau périodique.

- Donner le numéro atomique de ces deux éléments - Donner la représentation de Lewis de ces deux
- éléments
- Représenter les molécules H_2O , H_2S
- On donne les températures de changement d'état cidessous, expliquez :

Exercice 2 : Quelques composés azotés

L'azote se retrouve sous la forme de nitrate d'ammonium NH_4NO_3 dans les engrais.

- 1) Le nitrate d'ammonium est préparé par la réaction entre l'acide nitrique HNO_3 et l'ammoniac NH₃. Ecrire la réaction
- 2) Ecrire le schéma de Lewis de l'acide nitrique en veillant à respecter la règle de l'octet

3) Donner la formule de Lewis de l'ammoniac

Le protoxyde d'azote $N_2\mathcal{O}$, connu pour ses propriété enivrantes (d'où son appellation de gaz

4) Donner la représentation de Lewis de $N_2\mathcal{O}$ (Les azotes sont voisins)

Dans la suite, on notera $[A]_0$ la concentration initiale du réactif A et la réaction envisagée

 $A \rightarrow produit$

Donner l'expression de [A](t) dans les cas suivants

- ➤ Ordre sáro par rapport à A
- ➤ Ordre un par rapport à A ➤ Ordre deux par rapport à A

Exercice 1 : Chimie

- O: 1s², 2s², 2p⁴ S: 1s², 2s², 2p⁶, 3s², 3p⁴
- On a un effet de la lisseon H qui est manifeste dans le ces de l'eau et un effet de polarisabilité des molécules qui augmente avec leur taille

NH ₃	Nombre total d'électrons valence :8 Nombre de doublets : 4	de	H—N—H
HNO ₃	Nombre total d'électrons valence :24 Nombre de doublets : 12	de	$H-\underline{\bar{Q}}-\overset{\bigcirc}{\underset{\Theta}{\mathbb{Q}}}\overset{\ominus}{=}$
N ₂ O	Nombre total d'électrons valence :16 Nombre de doublets : 8	de	$N \equiv N - \overline{\underline{0}} = 0$

Ordre zéro par rapport à A

Si $v(t) = -\frac{d[A]_d}{dt} = k[A]_t^0 = k$

Alors : $[A]_t = [A]_0 - kt$

Et le temps de demi-réaction $\epsilon_{1/2}$ pour lequel $[A]_{\epsilon_{1/2}} = \frac{|A|_0}{\epsilon}$ vérifie : $\epsilon_{1/2} = \frac{|A|_0}{\epsilon}$

➤ Ordre un par rapport à A

Si $v(t) = -\frac{d[A]_t}{dt} = k[A]_t^2 = k[A]_t$

Alors: $[A]_{\tau} = [A]_{0} \exp\left(-\frac{\pi}{2}\right)$ avec $\tau = \frac{\pi}{2}$

> Ordre deux par rapport à ₄

Si $v(t) = -\frac{d[a]_2}{dt} = k[A]_2^2$

Alors $: \frac{1}{|x|_0} - \frac{1}{|x|_0} = \ker \mathbb{E} \, \mathbf{t} : t_{1/2} = \frac{1}{|x|_0 \lambda}$