Nom : Fabard	Prénom: Nohann	colle du: 10-12-24	ĺ	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats important	s du cours			1			
Connaître les hypothèses d'application des résultats				1	10	5,0	
Savoir appliquer directement son cours sur un exemple simple							
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses			NE				
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée				1	6	3,0	10,0
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations				1			
Valider : Vérifier la pertinence du résul	ltat obtenu (critique de la	a valeur et de sa dimension)		NE			
Communiquer à l'oral dans un langage	ommuniquer à l'oral dans un langage courant, scientifique et approprié						
Rédiger proprement ses démarches a	u tableau			1	4	2,0	

ustement		note	10

Remarques : En physique on démontre tout ! (sauf les pp) Donc pas de résultats Vrai/Faux sans justification

Exercice 1:

		Vrai	Faux	
1.	La circulation du champ électrostatique est toujours nulle.			
2.	On passe du champ au potentiel en dérivant, et du potentiel au champ en intégrant.			
3.	Une valeur de potentiel n'a pas de signification physique, seules les différences de potentiel en ont une.			
4.	Les surfaces équipotentielles sont parallèles aux lignes de champ.			
5.	Le champ électrostatique est orienté dans le sens des potentiels			

Exercice 2:

décroissants.

On rappelle que le champ électrostatique d'une plaque chargée avec une densité surfacique σ est :

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \overrightarrow{u_z} \, si \, z > 0 \, et \, \vec{E} = -\frac{\sigma}{\varepsilon_0} \overrightarrow{u_z} \, si \, z < 0$$

En déduire l'expression du potentiel si $V(0) = V_0$

Exercice 3:

Un électron-volt est l'énergie acquise par un électron sous une différence de potentiel de 1V. Quelle est sa valeur en Joule?

Exercice 1:

1. 2.		3.	4.	5.	
faux	faux	vrai	faux	vrai	

- 1. Elle n'est nulle que le long d'une courbe fermée.
- 2. C'est l'inverse.
- 4. Elles sont orthogonales aux lignes de champ en tout point.
- **5.** C'est ce qu'indique la relation $\vec{Z} = -\text{grad } V$.

Exercice 2:

$$V = -\frac{\sigma}{\varepsilon_0}z + V_0 \sin z > 0$$
 et $V = \frac{\sigma}{\varepsilon_0}z + V_0 \sin z < 0$

Exercice 3:

$$E_p = e\Delta V = 1.6\times 10^{-19}J$$

Nom: Saget Prénom: Iannis colle du: 10-12-24	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1	10	5,0	10,0
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	- 6	3,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE	NE		
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
proprement ses démarches au tableau 1 2,0				

	+	-		
ajustement			note	10

Remarques : Cela manque de recul sur le cours : c'est la 2e fois!

- 1) Appuyé d'un schéma, énoncer la loi de Coulomb exprimant la force électrique qu'exerce une charge ponctuelle q_P située en P sur une charge q_M située en M.
- 2) Donner l'expression du champ électrostatique créé par la charge q_P
- 3) Donner l'expression du potentiel électrostatique associé à la charge q_p

On considère une coquille hémisphérique de rayon R uniformément chargée en surface avec une densité σ

- 1) Donner l'expression d'un élément de surface de cette sphère. Le représenter en faisant également apparaître la distribution
- 2) Donner l'expression du champ au centre O de cet hémisphère

Soit deux charges - q et +q situées en deux points A et B. Soit +q' placée sur la médiatrice de AB.

- a) Dessiner sur un schéma les forces F⁻et F̄+ exercées par les charges -q et +q sur la charge +q'.
 b) Dessiner la force résultante F̄ s'exercant sur q'.
 c) Exprimer F̄ en fonction de q,q'.det α.

Une charge ponctuelle q_p située en P exerce une force électrostatique \vec{f} sur une charge d'essai $q_{\scriptscriptstyle M}$ placée en M .

La force \vec{f} s'exprime par : $\vec{f} = q_M \frac{q_P}{4\pi\epsilon_p p_M^2} \overrightarrow{PM} = q_M \frac{q_P}{4\pi\epsilon_p r^2} \overrightarrow{u_r}$ avec $\overrightarrow{u_r} =$ $\frac{\overline{PM}}{PM}$. Le champ électrostatique $\vec{E}(M)$ créé en un point M par une charge ponotuelle q_p située en P est donné par $\overrightarrow{E}(M) = \frac{q_p}{4\pi\epsilon_0 p N^2} \overrightarrow{PM} = \frac{q_p}{4\pi\epsilon_0 p N^2} \overrightarrow{u_r}$

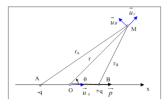
Et $V(M) = \frac{q_p}{4\pi\epsilon_* PM}$

$dS = R^2 sin\theta d\theta d\varphi$

$$E(0) = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \frac{\sigma R^2 \sin\theta \cos\theta \, d\theta}{4\pi\varepsilon_0 R^2} = -2\pi \int_0^{\pi/2} \frac{\cos\theta \, d\cos\theta}{4\pi\varepsilon_0} = -\frac{\sigma}{2\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{4\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{4\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{4\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{2\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{4\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{\sigma}{2\varepsilon_0} \left[\frac{\cos^2\theta}{2}\right]_0^{\pi/2} = \frac{$$

Exercice : Savoir exprimer la force électrique

$$F = 2 \frac{qq' cos\alpha}{4\pi\varepsilon_0 d^2}$$


Nom : Louet Prénom:Mattis colle du: 10-12	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1	10	5,0	
avoir appliquer directement son cours sur un exemple simple				
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	- 6	3,0	10,0
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
stement			note	10

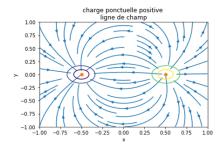
Remarques : exo pas simple mais important dans l'optique de centrale : DL, expression du potentiel total par pp de superposition, opérateur gradient en sphérique

Exercice 1:

On considère le dipôle électrostatique suivant de moment dipolaire \vec{p} :

- 1) Donner l'expression du potentiel électrique total en fonction de r_a et r_b (pour chaque charge in prendra un potentiel nul à l'infini)
- 2) On note d=AB et on se place dans le cas où $d\ll r$, en deduire que $V(M) \approx \frac{p cos \theta}{4\pi \epsilon_0 r^2}$
- 3) En déduire les deux composantes du champ électrique \vec{E} .
- 4) Exprimer $\vec{E}(r, \theta = 0)$
- 5) On considère un second dipôle identique au premier, situé sur l'axe 0x à une distance $x \gg d$, montrer que la force électrique s'appliquant sur le dipôle est donnée par $\vec{f}=$ $\overrightarrow{grad}(\vec{p}.\vec{E})$
- 6) Apporter quelques commentaires à cette force.
- 7) Obtenir quelques lignes de champ et équipotentielles d'un dipôle électrostatique sur python

1)
$$V = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_B} - \frac{1}{r_A} \right)$$


1)
$$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_B} - \frac{1}{r_A}\right)$$

2) $r_A \approx r(1 + \frac{d}{r}\cos\theta) \stackrel{\text{de}}{=} r_A \approx r(1 - \frac{d}{r}\cos\theta)$
Done $V \approx \frac{p\cos\theta}{4\pi\varepsilon_0 r^2}$
 $/2\cos\theta$

$$\vec{E} = \frac{p}{4\pi\epsilon_0} \begin{pmatrix} \frac{2\cos\theta}{r^2} \\ \frac{\sin\theta}{r^2} \end{pmatrix}$$

4)
$$\vec{E}(r, \theta = 0) = \frac{p}{2\pi\varepsilon_0 r^2} \vec{u_r}$$

5)
$$\vec{f} = q(-E(x) + E(x + 2d)) \approx p \frac{dE}{dx} = \overrightarrow{grad}(\vec{p}.\vec{E})$$

- 5) $\vec{f} = q(-E(x) + E(x + 2d)) \approx p \frac{dE}{dx} = \overline{grad}(\vec{p}.\vec{E})$ 6) Cette force dérive d'une énergie potentielle $E_p = -\vec{p}.\vec{E}$ et tend attirée le dipôle car $\frac{dE}{dx} < 0$
- 7) On a:

