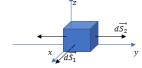
B11:	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10	10,0	
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée		3,0	#DIV/0!	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	0	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4 #DIV/0!		
Rédiger proprement ses démarches au tableau	NE	4	#DIV/0!	


	+	-		
ajustement			note	#DIV/0!

Remarques : reprise de vacances : non noté

Soit $\vec{a}(M)$ un champ de vecteur.

- 1) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface ouverte S.
- 2) Donner la définition du flux ϕ de $\vec{a}(M)$ à travers une surface fermée S.
- 3) Rappeler la définition de la divergence de \vec{a} ainsi que le théorème d'Ostrogorski
- 4) Donner la définition de la divergence de \vec{a} en repérage cartésien

Soit $\vec{a} = 2x^2 \overrightarrow{u_v}$.

Le cube ci-dessous est d'arrête de longueur d

- 1) Calculer le flux de \vec{a} à travers S_1
- 2) Calculer le flux de \vec{a} à travers S_2
- 3) Effectuer un bilan de flux.
- Calculer divā

Exercice : Divergence

Soit un champ vectoriel $\vec{d}(x,y,z) = \begin{pmatrix} a_X(x,y,z) \\ a_Y(x,y,z) \end{pmatrix}$ en repérage cartésien

- 1) Donner l'expression du bilan de flux élémentaire $\sum_{i=1}^{n} \vec{d} \cdot \vec{dS_i}$ à travers une surface fermée élémentaire délimitant le volume dV = dxdydz. On ferra surface termes elementaire delimitant le volume av = axayaz. Or apparaître les dérivées partielles $\frac{\partial a_x}{\partial x}, \frac{\partial a_y}{\partial y}, \frac{\partial a_z}{\partial z}$ 2) En déduire l'expression de $div\vec{a}$ sachant que $\sum_i \vec{a}_i div\vec{a}_i di$

Le cours :

- 1) $\phi = \iint_{S} \vec{a} \cdot d\vec{S}$
- 2) $\phi = \iint \vec{a} \cdot d \overrightarrow{S_{ext}}$
- 3) $\sum \vec{a}.\vec{d}.\vec{dS_{\text{extt}}} = \vec{dsva}dV \leftrightarrow \vec{\Phi}.\vec{dS_{\text{extt}}} = \vec{\iiint_V} \vec{dsva}dV$ 4) $\vec{dsva} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$

Soit $\vec{a} = 2x^2 \overrightarrow{u_v}$.

- 1) Flux nul
- 2) $\phi = \frac{2}{3}d^4$
- 3) Bilan de flux nul
- 4) $div\vec{a} = 0$

B12	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			#DIV/0!
Connaître les hypothèses d'application des résultats		10	8,3	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée NE Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations 1		6	2.0	
		3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	NE	4 #DIV/0!		
Rédiger proprement ses démarches au tableau	NE			

	+	-		
ajustement			note	#DIV/0!

Remarques : Colle non noté pour révision de méca

Exercice

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.s^{-1}$ et un débit volumique sortant $D_{vs} = 5L.s^{-1}$. Le fluide est de l'eau.

- 1) Quels sont les débits massiques associés ?
- 2) Quel est le taux de variation temporel de la masse de ce volume de
- 3) Quelle est la variation de masse du volume de contrôle au bout de 10s

Exercice

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

- 1) Soit j_1 la valeur du vecteur densité au niveau de la surface S_1 et j_2 sa valeur à la surface S_2 . Donner une relation entre ces paramètres.
- 2) $S_1 = 10c\,m^2, j_1 = 5kg\,.\,m^{-2}s^{-1}\,\underline{\mathrm{donner}}$ la valeur du débit massique

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\vec{u}\vec{g}}{\vec{a}}$.

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV = rdrd\theta dz$
- 2) En déduire l'expression de divd

On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\vec{u_r}}{a}$.

- 1) Calculer le bilan de flux de ce champ à travers une surface fermée délimitant un volume $dV = r^2 sin\theta dr d\theta d\varphi$
- En déduire l'expression de diva

Exercice

Un volume de contrôle échange un débit volumique rentrant $D_{vs}=10L.\,s^{-1}$ et un débit volumique sortant $D_{vs} = 5L.s^{-1}$. Le fluide est de l'eau.

1)
$$D_{me} = 10kg.s^{-1}, D_{ms} = 5kg.s^{-1}$$

2) $\frac{dm}{dt} = 5kg/s$

2)
$$\frac{dm}{dt} = 5kg/s$$

3)
$$\Delta m = 50kg$$

On considère un écoulement stationnaire à flux conservatif en vecteur densité de courant \vec{j} . On suppose également que \vec{j} est uniforme sur chaque section droite et parfaitement perpendiculaire à cette dernière.

1)
$$j_1S_1 = j_2S_2$$
.

2)
$$D_m = 5 \times 10^{-3} kg/s$$

On considère un champ décrit en repérage cylindrique par $\vec{a} = \frac{\vec{u}\vec{g}}{\vec{\omega}}$.

1)
$$d\Phi = 0$$

2)
$$div\vec{d} = 0$$

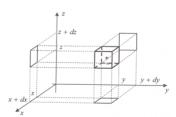
Exercice

On considère un champ décrit en repérage sphérique par $\vec{a} = \frac{\vec{u_r}}{\omega^2}$.

2)
$$div \vec{a} = 0$$

B13	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10	8,3	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	1			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6 3,0		13,5
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4 2.0		
Rédiger proprement ses démarches au tableau	1	4	2,0	

ajustement * note 15		+	-		
	ajustement	*		note	15


Remarques : Bonne colle

On rappelle la définition de l'opérateur gradient appliqué à une fonction scalaire f(M) : $df = \overrightarrow{grad}f \cdot d\overrightarrow{OM}$

- 1) Calculer le gradient de $P(z)=-\rho gz++P_c$ avec ρ,g et P_c constants 2) Représenter quelques lignes de champ de gradP
- 3) I dentifier les surfaces pour lesquelles P est constant

Exercice : Question de cours :

On considère un élément de volume dV de fluide au repos dans un référentiel Galiléen lié à une base cartésienne représentée ci-dessous.

- 1) Montrer que le bilan de force pressante (volumique) $d\vec{f_v}$ s'exerçant sur dV est $d\overrightarrow{f_v} = -\overrightarrow{grad}PdV$
- 2) Etablir alors la loi de la statique des fluides dans le champ de pesanteur terrestre ĝ.

Exercice : opérateur gradient

1) Soit f(x, y, z) = xyz, calculer $\overrightarrow{grad}f$

Exemice : Question de cours :

- Le bilan des forces de pression suivant $\overrightarrow{u_x}$ est: $d\overrightarrow{E_Y}.\overrightarrow{u_x} = \left(P(x,y,z) P(x+dx,y,z)\right)dydz = -\frac{\partial P}{\partial x}dV$ $d\overrightarrow{E_Y} = -\left(\frac{\partial P}{\partial x}\overrightarrow{u_x} + \frac{\partial P}{\partial y}\overrightarrow{u_y} + \frac{\partial P}{\partial z}\overrightarrow{u_z}\right)dV$
- Soit \vec{g} le champ de pesanteur (terrestre), $\rho(M)$ la masse volumique du fluide au point M, alors un volume élémentaire statique dest-à-dire en équilibre avec son poids vérifie :
- $\rho(M)\vec{g} = \overrightarrow{grad}P(M)$

Exercice :

1)
$$\overrightarrow{grad}f = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$

2)
$$\overrightarrow{grad}f = \begin{pmatrix} y + z + \frac{yz}{a} \\ x + y + \frac{xz}{a} \\ x + y + \frac{yz}{a} \end{pmatrix}$$

3)
$$\overrightarrow{grad}f = \begin{pmatrix} 6x \\ 0 \\ -2a \end{pmatrix}$$

- 2) Idem pour $f(x, y, z) = xy + yz + zx + \frac{xyz}{a}$ 3) Idem pour $f(x, y, z) = 3x^2 + 2a(x z) + b^2$