
A51	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours				
Connaître les hypothèses d'application des résultats		10	5,0	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée		1.5	8,5	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	0	6 1,5		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement			note	9

Remarques: cycle de Hess et loi de Hess a reprendre....OK pour l'exo 1

Ilias : Exercice : diagramme

- 1) Identifier la nature des courbes a,b,c,d
- 2) Remplir le tableau suivant :

	Etat du fluide (liquide/gaz/fraction massique en gaz)	Pression, température	Enthalpie massique	Entropie massique
A				
В				

Exercice :

$$\text{On donne}: \begin{cases} H_2S_{(g)} + \frac{3}{2}O_{2(g)} = H_2O_{(g)} + SO_{2(g)} \to \Delta_r H_1^0 = -500kJ.\,mol^{-1} \\ CS_{2(l)} + 3O_{2(g)} = CO_{2(g)} + 2SO_{2(g)} \to \Delta_r H_2^0 = -1000kJ.\,mol^{-1} \end{cases}$$

Quelle est l'enthalpie de réaction de la réaction suivante :

$$CS_{2(l)} + 2H_2O_{(g)} = CO_{2(g)} + 2H_2S_{(g)}$$

Evereice

- 1) a : isentropique, b : isotitre, c : isotherme, d : isotherme et isenthalpe
- 2) On a:

	Etat du fluide (liquide/gaz/fraction massique en gaz)	Pression, température	Enthalpie massique(kJ/kg)	Entropie massique (kJ/K/kg)
A	Liquide	T = 250°C P = 100bar	h ≈ 1000	s ≈ 3
В	Mélange diphasique $x = 0.4$	$T = 100^{\circ}C$ $P = 1bar$	h ≈ 1200	s ≈ 3.75

Exercice:

$$\Delta_r H^0 = \Delta_r H_2^0 - 2\Delta_r H_1^0 = 0kJ/mol$$

A52		poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	voir énoncer les résultats importants du cours			
Connaître les hypothèses d'application des résultats		10	6,7	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	2.0	11,5
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié		2.0		
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement		*	note	11

Remarques : cela manque de recul sur le repérage et l'utilisation de l'opérateur gradient

Soit une fonction f(x, y, z), une fonction de l'espace en repérage cartésien

- 1) Donner l'expression de la différentielle df de f en fonction de se dérivée partielles
- Exprimer df en fonction de gradf.
- 3) En déduire l'expression de l'opérateur gradient en repérage cartésien.
- 4) Reprendre les questions précédentes en repérage sphérique

On rappelle la définition de l'opérateur gradient appliqué à une fonction scalaire f(M): $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) Calculer le gradient de f(x) = ax + b avec a et b constants
- Représenter quelques lignes de champ de gradf
- Identifier les surfaces pour lesquelles f est constant.

- 1) Rappeler le lien entre le travail d'une force conservative $\overrightarrow{F_c}$ et son énergie potentielle $E_p(M)$.
- 2) Montrer que $\overrightarrow{F_c} = -\overrightarrow{grad}E_p$
- 3) Soit un objet de masse m dans le champ de pesanteur terrestre \vec{g} uniforme. Déterminer l'expression de l'énergie potentielle ${\cal E}_{pp}$ de pesanteur en utilisant
- 4) Soit un objet de masse m dans le champ gravitationnel non uniforme de la Terre : $\vec{G}(M) = -G \frac{M_t}{r^2} \overrightarrow{u_r}$ où G est la constante gravitationnelle, r la distance entre la masse m et le centre de la Terre et M_t la masse de la Terre. Déterminer l'énergie potentielle associée à la force gravitationnelle.

La variation locale (ou élémentaire) est donnée par : $df = \left(\frac{\partial f}{\partial x}\right)_{y,z} dx + \left(\frac{\partial f}{\partial y}\right)_{x,z} dy +$

On va écrire ce résultat sous la forme d'un produit scalaire $df = \overline{grad} f \cdot d\overline{OM}$

En base cartésienne :	En base cylindrique	Base sphérique
$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$	$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{1}{r} & \frac{\partial f}{\partial \theta} \\ \frac{\partial f}{\partial z} \end{pmatrix}$	$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{1}{\partial r} \\ \frac{1}{r} \frac{\partial f}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \end{pmatrix}$

On rappelle la définition de l'opérateur gradient appliquée à une fonction scalaire f(M): $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) $\overrightarrow{grad}f = a\overrightarrow{u}_x$
- 2) Champ uniforme
- 3) Plans perpendiculaires à $\overrightarrow{u_x}$

- 1) $dE_p = -\delta W = -\vec{F}. d\overrightarrow{OM}$
- 2) $\vec{F} = \overrightarrow{grad} E_P$
- 3) $E_{pp} = \pm mgz + Cte$ 4) $E_p = -\frac{GMm}{r}$

A63	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats		10	10,0	
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	0			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1	6 3,0		15,0
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	2			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement	*		note	16

Remarques : OK pour les exo 1 et 2

Colle

Exercice 1 : Repérage

- 1) Dessiner la base cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$ en un point $M(r, \theta, z)$
- 2) Déterminer la surface latérale S d'un cylindre de rayon R et de hauteur h.
- 3) Déterminer la masse m du cylindre précédent si sa masse volumique $\rho(r)=\frac{\rho_0 r}{\rho_0}$, ρ_0 et R sont des constantes.
- 4) Déterminer le moment d'inertie J d'une sphère homogène de masse volumique ρ autour de son axe Dz. On rappelle que $J = \int HM^2dm$ où HM est la distance radiale du point M avec l'axe Dz. On donne $\int sin^3\theta = \int (1-cos^2\theta)sin\theta d\theta = -\int (1-cos^2\theta)dcos\theta$

Exercice 2 : pression au centre du sole

On assimile le soleil à un fluide statique, incompressible de masse volumique ρ occupant une sphère de rayon R. Dans cette sphère, le champ de pesanteur est radial est vaut $\vec{g} = -\frac{g\sigma_0^2}{ur}$ où g_0 est une constante.

Déterminer l'expression de la pression dans le soleil. On note P(r=R)=0.

Exercice 3: Liquides non miscible

Pour mesurer la densité d d'une huile de pétrole, on verse de l'eau dans un tube en U à deux branches verticales de sections S_1 et $S_2 < S_1$. On verse ensuite très lentement de l'huile de pétrole dans la branche 1. Puis on mesure les côtes verticales z_2 du ménisque de l'eau dans la branche 2, z_1 de l'huile et z_0 de l'interface. On note ρ_0 la masse volumique de l'eau.

Donner l'expression de \boldsymbol{d}

Exercice 1 Repérage

 $2)S = 2\pi Rh$

 $3)m = \frac{2\pi\rho_0 h}{2}R^2$

$$4)I=\int HM^2dm=\rho\int r^4sin^3\theta\,d\theta d\varphi dr=2\pi\rho\frac{R^5}{5}\frac{4}{3}$$

$$I = 2m \frac{R^2}{5}$$

Exercice 2 : pression au centre du soleil

D'après la loi de la statique des fluides : $\frac{dP}{dr} = -\rho \frac{g_0 r}{P}$

Donc: $P(r) = \rho \frac{g_0}{2p} (R^2 - r^2)$ (au centre, on trouve 1Gbar!)

Exercice 3: Liquides non miscible

Pour cette situation statique, on a :

$$\begin{cases} P(z_0) = P_0 + \rho g(z_1 - z_0) \\ P(z_0) = P_0 + \rho_e g(z_2 - z_0) \end{cases}$$

Donc
$$d = \frac{z_2 - z_0}{z_1 - z_0} < 1$$