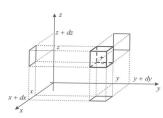
A41		poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	1	10	6,7	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	3.0	11,5
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations		3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
niquer à l'oral dans un langage courant, scientifique et approprié		2.0		
Rédiger proprement ses démarches au tableau	1	4 2,0		


	+	-		
ajustement	*		note	13

Remarques : prochain objectif : gagner en autonomie

On rappelle la définition de l'opérateur gradient appliqué à une fonction scalaire f(M) : $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) Calculer le gradient de $P(z) = -\rho gz + +P_0$ avec ρ, g et P_0 constants
- Représenter quelques lignes de champ de gradP
 Identifier les surfaces pour lesquelles P est constant

On considère un élément de volume dV de fluide au repos dans un référentiel Galiléen lié à une base cartésienne représentée ci-dessous.

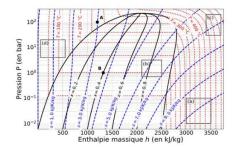
- 1) Montrer que le bilan de force pressante (volumique) $d\vec{f}_{\nu}$ s'exerçant sur dV est $d\overrightarrow{f_v} = -\overrightarrow{grad}PdV$
- 2) Etablir alors la loi de la statique des fluides dans le champ de pesanteur terrestre \vec{g} .

- 1) Soit f(x, y, z) = xyz, calculer $\overrightarrow{grad}f$
- 2) Idem pour $f(x, y, z) = xy + yz + zx + \frac{xyz}{a}$ 3) Idem pour $f(x, y, z) = 3x^2 + 2a(x z) + b^2$

- Le bilan des forces de pression suivant $\overrightarrow{u_x}$ est :
- $d\overrightarrow{F_V}.\overrightarrow{u_x} = \left(P(x,y,z) P(x+dx,y,z)\right)dydz = -\frac{\partial P}{\partial x}dV$
- $d\overrightarrow{F_V} = -\left(\frac{\partial P}{\partial x}\overrightarrow{u_x} + \frac{\partial P}{\partial y}\overrightarrow{u_y} + \frac{\partial P}{\partial z}\overrightarrow{u_z}\right)dV$
- Soit \vec{g} le champ de pesanteur (terrestre), $\rho(M)$ la masse volumique du fluide au point M, alors un volume élémentaire statique c'est-à-dire en équilibre avec son poids vérifie :
- $\rho(M)\vec{g} = \overrightarrow{grad}P(M)$

$$\overrightarrow{grad}f = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$

2)
$$\overrightarrow{grad}f = \begin{pmatrix} y + z + \frac{yz}{a} \\ x + y + \frac{xz}{a} \\ x + y + \frac{yz}{a} \end{pmatrix}$$


$$\overrightarrow{grad}f = \begin{pmatrix} 6x \\ 2a \\ -2a \end{pmatrix}$$

A42		poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours				
Connaître les hypothèses d'application des résultats		10	5,0	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses				
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	2.0	10,0
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4 20		
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement		*	note	9

Remarques : Cela manque d'automatisme dès qu'il faut restituer une formule du cours : exemple, la loi de Hess appliquer à un cycle

Ilias : Exercice : diagramme

- 1) Identifier la nature des courbes a,b,c,d
- 2) Remplir le tableau suivant :

	(liquide/gaz/fraction massique en gaz)	température	Enthalpie massique	Entropie massique
A				

Exercice :

$$\text{On donne}: \begin{cases} H_2S_{(g)} + \frac{3}{2}O_{2(g)} = H_2O_{(g)} + SO_{2(g)} \rightarrow \Delta_r H_1^0 = -500kJ.mol^{-1} \\ CS_{2(l)} + 3O_{2(g)} = CO_{2(g)} + 2SO_{2(g)} \rightarrow \Delta_r H_2^0 = -1000kJ.mol^{-1} \end{cases}$$

Quelle est l'enthalpie de réaction de la réaction suivante :

$$CS_{2(l)} + 2H_2O_{(g)} = CO_{2(g)} + 2H_2S_{(g)}$$

Exercice

- 1) a : is entropique, b : isotitre, c : isotherme, d : isotherme et is enthalpe
- 2) On a

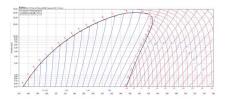
	Etat du fluide (liquide/gaz/fraction massique en gaz)	Pression, température	Enthalpie massique(kJ/kg)	Entropie massique (kJ/K/kg)
A	Liquide	T = 250°C P = 100bar	h ≈ 1000	s ≈ 3
В	Mélange diphasique $x = 0.4$	$T = 100^{\circ}C$ $P = 1bar$	h ≈ 1200	s ≈ 3.75

Exercice:

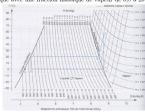
$$\Delta_r H^0 = \Delta_r H_2^0 - 2\Delta_r H_1^0 = 0kJ/mol$$

A43		poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours				
Connaître les hypothèses d'application des résultats	1	10	5,0	
Savoir appliquer directement son cours sur un exemple simple	1	1		
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1	6	3,0	10,0
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4 2,0		
Rédiger proprement ses démarches au tableau	1			

ajustement * note 11		+	-		
	ajustement	*		note	11


Remarques : Cela manque un peu d'automatisme sur le règle des moments, ne pas hésiter à me demander des colles à la carte (attention aux AN)!

Exercice: P(T)


- 1) Dessiner le diagramme pression-température de l'eau
- 2) Placer sur le diagramme les différentes phases associées à chaque domaine
- 3) Donner le nom des transformations associées aux changements de phases

Exercice: Thermochimic

Représenter le point P représentatif du R134a en situation diphasique avec une fraction massique de vapeur de 0,8 à 20°C. En déduire l'énergie mise en jeu pour liquéfier de manière isobare 2kg de R134a situé en P.

Questions de réflexion : Donner le point représentatif de l'ammoniac en situation diphasique avec une fraction massique de vapeur de 0.8 à 20° C

Exercice : P(T)

Exercice: Thermochimie

Pour trouver le point représentatif, on peut écrire que ce dernier vérifie un niveau enthalpique donné par $h_M=(1-x)h_l+xh_v=0.2*220+0.8*400\approx 364kJ/kg/K$.

Pour la liquéfaction, il faut $Q=2*x_P*l_{liq}\approx 2*0.8*(220-400)\approx -288kJ.kg^{-1}$

Questions de réflexion

Pour trouver le point représentatif, on peut écrire que ce dernier vérifie un niveau entropique donné par $s_M=(1-x)s_c+xs_B=0,2*4.5+0.8*8.5\approx 8kJ/kg/K$