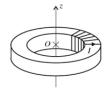
Nom : Ben alla Tafka	Prénom: Abderrahime	colle du: 16_01	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants d	lu cours		1			
Connaître les hypothèses d'application des résultats				10	5,0	
Savoir appliquer directement son cours s	sur un exemple simple		1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses			0	6	1,5	7,5
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée			NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations			1			
Valider : Vérifier la pertinence du résultat	obtenu (critique de la valeu	ur et de sa dimension)	NE			
Communiquer à l'oral dans un langage co	ourant, scientifique et appro	pprié	0	4		
Rédiger proprement ses démarches au ta	ableau		1	4	1,0	

	+	-		
ajustement	*		note	9

Remarques : le repérage en cylindrique n'est pas maitrisé et c'est donc bloqaunt pour appliquer TG et TA, et attention au vocabulaire qui révèle une maitrise fragile du cours

Colle Benn Alla Exercice 1:

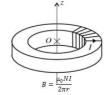
- Déterminer le champ électrique d'un fil infini chargé uniformément en longueur avec une densité λ
- Déterminer le champ magnétique d'un fil infini traversé par un courant d'intensité I uniforme


Exercice 2:

- Déterminer le champ électrique créé par une sphère de rayon R uniformément chargée en surface avec une densité σ
- Déterminer le champ électrique créé par une sphère de rayon R uniformément chargée en volume avec une densité

Exercice 3: Bobine torique

On considère un tore de section carrée et d'axe (Oz). On réalise une bobine en enroulant un fil sur le tore en N spires très serrées et régulièrement réparties. On fait alors circuler un courant I dans $\log I$


- Etudier les symétries et invariances du problème, en déduire la forme du champ magnétostatique.
- Calculer le champ magnétique créé en tout point de l'espace par cette bobine.

Exercice 3: Bobine torique

On considère un tore de section carrée et d'axe (Oz). On réalise une bobine en enroulant un fil sur le tore en N spires très serrées et régulièrement réparties. On fait alors circuler un courant I dans le fil.

- Etudier les symétries et invariances du problème, en déduire la forme du champ magnétostatique.
- Calculer le champ magnétique créé en tout point de l'espace par cette bobine.

Nom : Duchastenier Prénom: Mathieu colle du: 26-09	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	0			
Connaître les hypothèses d'application des résultats	0	10	0,0	1,0
Savoir appliquer directement son cours sur un exemple simple	0			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	0,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	0			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	0			
Rédiger proprement ses démarches au tableau	1 1,0			

	+	-		
ajustement	*		note	2

(13)

Remarques : sans connaissance de cours, il est trop compliqué d'avancer en autonomie.....

Exercice 1 : dipôle magnétique

On suspend une spire de rayon R, de masse m et parcourue par un courant I à un fil sans torsion. La spire est plongée dans le champ magnétique terrestre supposé horizontal et uniforme, noté $\overrightarrow{B_0}$. On note heta l'angle que fait la normale de la surface orientée constituée par la spire et le champ magnétique

- 1. Exprimer le moment magnétique de la spire.
- 2. Exprimer, à l'aide du schéma ci-dessous, le moment subit par la spire.

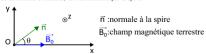


Figure 2-Moment d'une spire magnétique

- 3. En appliquant le théorème du moment cinétique à la spire qui s'écrit $J\frac{d\omega}{dt}=M(\overrightarrow{F})$ avec J le moment d'inertie de la spire, donner l'équation du mouvement de la spire dans l'approximation des petits angles. On sait qu'initialement, on écarte la spire de sa position d'équilibre d'un angle $\theta=\theta_0$ et on la lâche sans vitesse initiale.
- 4. Comment peut-on alors calculer la valeur du champ magnétique terrestre ?

Exercice 2 : Maxwell-Ampère

On étudie une distribution de courant caractérisée par le vecteur densité volumique de courant $\overrightarrow{j}(x,y,z)$ suivant $|z| < a : \overrightarrow{j}(x, y, z) = j_0 \overrightarrow{e_x}$

 $|z| \ge a$: $\overrightarrow{j}(x, y, z) = \overrightarrow{0}$

- Que pouvez-vous déduire des symétries et invariances pour le champ magnétique?.
 Déterminer l'expression du champ magnétique en tout point de l'espace.

Le moment magnétique de la spire a pour expression :

$$\overrightarrow{M}=I\overrightarrow{S}$$

Il suffit alors d'exprimer \overrightarrow{S} .

Le moment subi par la spire a pour expression :

$$\overrightarrow{M_O}(\overrightarrow{F}) = \overrightarrow{M} \wedge \overrightarrow{B}$$

Il faut maintenant développer le produit vectoriel

L'équation différentielle que l'on doit obtenir est :

$$\ddot{\theta} + \frac{M B_0}{I} \theta = 0 \tag{12}$$

Elle a pour solution :

$$\theta(t) = A\cos(\omega t + \phi)$$

Les constantes A et ϕ sont déterminées par les conditions initiales.

La spire a un mouvement d'oscillations à la pulsation ω (ou la période T). On peut alors, en mesurant la période par exemple, remonter à :

$$B_0 = \frac{4\pi^2 J}{M T^2} \tag{14}$$

Exercice 2:

$$\begin{cases} |z| < a : \overrightarrow{B} = -\mu_0 j_0 z \overrightarrow{u_y} \\ |z| \ge a : \overrightarrow{B} = -\left(sign(z)\right) \mu_0 j_0 a \overrightarrow{u_y} \end{cases}$$

Nom : Fridhi Prénom: Sofiane colle du: 19_12-24	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1	10	5,0	
Connaître les hypothèses d'application des résultats	1			
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses				
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6	1,5	8,5
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	- 4	2,0	
Rédiger proprement ses démarches au tableau	1			

	+	-				
ajustement		*	note	8		
investissement to dynamique de travail I						

Remarques : Analyse des symtéries d'un fil compliqué ! Il faut me montrer ou me démontrer ton investissement, ta dynamique de travail!

Colle 1

Exercice 1 : Symétrie/antisymétrie

- $1) \quad \text{Repérer les plans d'antisymétries et/ou de symétrie des distributions} \\$
- suivantes :
 Fil infini
- Solénoïde infini
- En déduire l'allure des lignes de champ magnétostatique associées

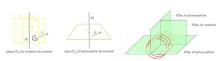
Exercice2 : A côté de la plaqu

- 1) Déterminer le champ électrique créé par une plaque de surface S permettant de négliger les effets de bord, d'épaisseur négligeable chargée avec une densité surfacque uniforme que
- 2) Déterminer le champ magnétique créé par une plaque de surface 5 permettant de négliger les effets de bond, d'épaisseur négligeable support d'un courant unidirectionnel et uniforme avec une densité j_s

Exercice 3 : dipôle magnétique

Un aimant très fin, de moment magnétique \overrightarrow{m}_i est posé sur une pointe en un point O différent de son centre de gravité G. L'ensemble est plongé dans un champ magnétostatique $\overrightarrow{B}_{\text{tot}}$ vertical uniforme. L'aimant subt le couple magnétique de moment $\overrightarrow{\Gamma} = \overrightarrow{m} \wedge \overrightarrow{B}_{\text{out}}$. À l'équilibre, il est à l'horizontale.

Ecrire la condition d'équilibre


Exercice 4 : Force de Lapla

Une spire carrée filiforme de côté a parcourue par un courant d'intensité i>0 est placée à proximité du fil supposé infini parcourue par un courant d'intensité l>0. Les deux circuits sont coplanaires, et la distance D entre le centre 0 de la spire et le circuit rectligne est supérieure à a/2.

- 1) Exprimer le champ magnétique créé par le cou
- Représenter la force de Laplace résultante constituant la spire carrée.
- 3) Déterminer la force exercée par le fil sur la spire en fonction de a,R,i et I.

Exercice 1 : Symétrie/antisymétrie

Exercice2 : Le flux

$$E = \pm \frac{\sigma}{\varepsilon_0}; B = \mu_0 j_s$$

Exercice 3 : dipôle magnétique

 $mB_{ext} = OGmg$

Exercice

On peut remarquer que la force de Laplace aura une contribution nulle pour les deux rebords horizintaux. Pour les portions verticales, la distance suppélemntaire a entre les deux bords entraîne une force totale non nulle donné par :

$$\begin{split} \vec{F} &= \int_{0}^{a} i dl \overrightarrow{u_{x}} \wedge \vec{B} \left(D - \frac{a}{2} \right) - \int_{0}^{a} i dl \overrightarrow{u_{x}} \wedge \vec{B} \left(D + \frac{a}{2} \right) = \int_{-\frac{a}{2}}^{2} i dz \overrightarrow{e_{x}} \wedge \frac{\mu_{al}}{2\pi (D - \frac{a}{2})} \overrightarrow{e_{\theta}} + \int_{\frac{a}{2}}^{-\frac{a}{2}} i dz \overrightarrow{e_{x}} \wedge \frac{\mu_{al}}{2\pi (D - \frac{a}{2})} \overrightarrow{e_{\theta}} + \int_{\frac{a}{2}}^{-\frac{a}{2}} i dz \overrightarrow{e_{x}} \wedge \frac{\mu_{al}}{2\pi (D - \frac{a}{2})} \overrightarrow{e_{\theta}} = -\frac{\mu_{al} la}{2\pi (D - \frac{a}{2})} \overrightarrow{e_{\theta}} + \frac{\mu_{al} la}{2\pi (D + \frac{a}{2})} \overrightarrow{e_{\theta}} - \frac{\mu_{al} la}{2\pi (D + \frac{$$