A31	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10	10,0	
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE		4.5	16,5
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1	6		
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	2	6 4,5		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

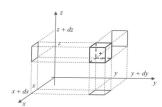
	+	-		
ajustement			note	17

Remarques : Bien : bonne colle

On rappelle la définition de l'opérateur gradient appliqué à une fonction scalaire f(M) : $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) Calculer le gradient de $P(z) = -\rho gz + +P_0$ avec ρ,g et P_0 constants
- Représenter quelques lignes de champ de gradP
 Identifier les surfaces pour lesquelles P est constant

On considère un élément de volume dV de fluide au repos dans un référentiel Galiléen lié à une base cartésienne représentée ci-dessous.



- 1) Montrer que le bilan de force pressante (volumique) $d\overrightarrow{f_v}$ s'exerçant sur dV est $d\overrightarrow{f_v} = -\overrightarrow{grad}PdV$
- 2) Etablir alors la loi de la statique des fluides dans le champ de pesanteur terrestre \vec{g} .

- 1) Soit f(x, y, z) = xyz, calculer $\overrightarrow{grad}f$
- 2) Idem pour $f(x, y, z) = xy + yz + zx + \frac{xyz}{a}$ 3) Idem pour $f(x, y, z) = 3x^2 + 2a(x z) + b^2$

- Le bilan des forces de pression suivant \$\overline{u_x}\$ est:
- $d\overrightarrow{F_V}.\overrightarrow{u_X} = (P(x,y,z) P(x+dx,y,z))dydz = -\frac{\partial P}{\partial x}dV$
- $d\overrightarrow{F_V} = -\left(\frac{\partial P}{\partial x}\overrightarrow{u_x} + \frac{\partial P}{\partial y}\overrightarrow{u_y} + \frac{\partial P}{\partial z}\overrightarrow{u_z}\right)dV$
- Soit \vec{g} le champ de pesanteur (terrestre), $\rho(M)$ la masse volumique du fluide au point M, alors un volume élémentaire statique c'est-à-dire en équilibre avec son poids vérifie :
- $\rho(M)\vec{g} = \overrightarrow{grad}P(M)$

Exercice

1)
$$\overrightarrow{grad}f = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$

$$\overrightarrow{grad}f = \begin{pmatrix} y + z + \frac{z}{a} \\ x + y + \frac{xz}{a} \\ x + y + \frac{yz}{a} \end{pmatrix}$$

3)
$$\overrightarrow{grad}f = \begin{pmatrix} 6x \\ 2a \\ -2a \end{pmatrix}$$

A32	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	2	10	10,0	
Savoir appliquer directement son cours sur un exemple simple	2			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE		3.0	15,0
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE	6		
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement			note	15

Remarques : Petite étourderie sur le calcul d'intégration, colle comprise

Soit une fonction f(x, y, z), une fonction de l'espace en repérage cartésien

- 1) Donner l'expression de la différentielle df de f en fonction de se dérivée partielles
- Exprimer df en fonction de gradf.
- 3) En déduire l'expression de l'opérateur gradient en repérage cartésien.
- 4) Reprendre les questions précédentes en repérage sphérique

On rappelle la définition de l'opérateur gradient appliqué à une fonction scalaire f(M) $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) Calculer le gradient de f(x) = ax + b avec a et b constants
- Représenter quelques lignes de champ de gradf
- Identifier les surfaces pour lesquelles f est constant.

- Rappeler le lien entre le travail d'une force conservative \(\vec{F}_c \) et son énergie potentielle $E_n(M)$.
- 2) Montrer que $\overrightarrow{F_c} = -\overrightarrow{grad}E_n$
- 3) Soit un objet de masse m dans le champ de pesanteur terrestre \vec{g} uniforme. Déterminer l'expression de l'énergie potentielle E_{pp} de pesanteur en utilisant l'opérateur gradient
- 4) Soit un objet de masse m dans le champ gravitationnel non uniforme de la Terre : $\vec{G}(M) = -G \frac{M_t}{r^2} \overrightarrow{u_r}$ où G est la constante gravitationnelle, r la distance entre la masse m et le centre de la Terre et M_t la masse de la Terre. Déterminer l'énergie potentielle associée à la force gravitationnelle.

La variation locale (ou élémentaire) est donnée par : $df = \left(\frac{\partial f}{\partial x}\right)_{y,z} dx + \left(\frac{\partial f}{\partial y}\right)_{y,z} dy +$ $\left(\frac{\partial f}{\partial z}\right)_{x,y} dx$

On va écrire ce résultat sous la forme d'un produit scalaire $df = \overrightarrow{grad}f \cdot \overrightarrow{dOM}$

En base cartésienne :	En base cylindrique	Base sphérique
$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$	$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{1}{\partial f} \\ \frac{1}{r} \frac{\partial f}{\partial \theta} \\ \frac{\partial f}{\partial z} \end{pmatrix}$	$\overrightarrow{grad} f = \begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{1}{\partial f} \\ \frac{1}{r} \frac{\partial f}{\partial \theta} \\ \frac{1}{r \sin \vartheta} \frac{\partial f}{\partial \phi} \end{pmatrix}$

On rappelle la définition de l'opérateur gradient appliquée à une fonction scalaire f(M): $df = \overrightarrow{grad}f.d\overrightarrow{OM}$

- 1) $\overrightarrow{grad}f = a\overrightarrow{u}_x$
- 2) Champ uniforme
- 3) Plans perpendiculaires à $\overrightarrow{u_x}$

- 1) $dE_p = -\delta W = -\vec{F} \cdot d\overrightarrow{OM}$
- 2) $\vec{F} = -\overrightarrow{grad} E_P$
- 3) $E_{pp} = \pm mgz + Cte$ 4) $E_p = -\frac{GMm}{r}$

A33	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	2			
Connaître les hypothèses d'application des résultats	1	10	6,7	
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE			
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	1	6	2.0	11,5
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1	6 3,0		
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
Communiquer à l'oral dans un langage courant, scientifique et approprié	1	4	2.0	
Rédiger proprement ses démarches au tableau	1	4	2,0	

	+	-		
ajustement			note	12

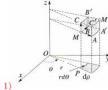
Remarques : quelques imprécisions sur le repérage sphérique, une étourderie à la fin sur l'intégartion de J

Question de cours

- a) Placer, dans la base cartésienne, le point $A(2; 2; 2\sqrt{2})$.
- b) Quel est le jeu de variables (r, θ, z) décrivant la position du point A dans la base cylindrique ? Représenter la base cylindroplaire associée à cette position du point A.
- c) Quel est le jeu de variables (r,θ,φ) décrivant la position du point A dans la base sphérique ? Représenter la base sphérique associée à cette position du point A

Exercice 1 : Repérage

- 1) Dessiner la base cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$ en un point $M(r, \theta, z)$
- 2) Déterminer la surface latérale S d'un cylindre de rayon R et de hauteur h.
- 3) Déterminer la masse m du cylindre précédent si sa masse volumique $\rho(r)=\frac{\rho_0 r}{B}\,\rho_0$ et R sont des constantes.
- 4) Déterminer le moment d'inertie J d'une sphère homogène de masse volumique ρ autour de son axe Oz. On rappelle que $I=\int HM^2dm$ où HM est la distance radiale du point M avec l'axe Oz. On donne $\int sin^3\theta = \int (1-cos^2\theta)sin\theta d\theta = -\int (1-cos^2\theta)dcos\theta$



$$2)S = 2\pi Rh$$
$$3)m = \frac{2\pi\rho_0 h}{3}R^2$$

$$4)I = \int HM^2dm = \rho \int r^4 \sin^3\theta \, d\theta d\varphi dr = 2\pi \rho \frac{R^5}{5} \frac{4}{3}$$

$$I = 2m \frac{R^2}{5}$$