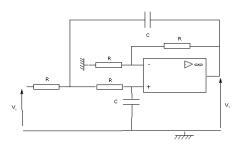
Nom :Caritine	Prénom: Nino	colle du: 11-03_25		niveau de maîtrise	poids compétence	note compétence	note globale	
Savoir énoncer les résultats importants d	du cours			1				
Connaître les hypothèses d'application d	0	10	3,3					
Savoir appliquer directement son cours s	sur un exemple simp	ole		1	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses				NE				
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée				NE	6	3,0	#DIV/0!	
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations			1					
Valider : Vérifier la pertinence du résultat	t obtenu (critique de	la valeur et de sa dimension)		NE				
Communiquer à l'oral dans un langage c	ourant, scientifique	ntifique et approprié NE 4 #DIV/0!						
Rédiger proprement ses démarches au t	ableau			NE	4			

	+	-		
ajustement		*	note	#DIV/0!

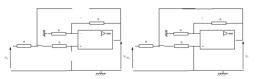
Remarques : ABS


Nom : Maroussi Prénom: Baptiste colle du: 11-03_25	niveau de maîtrise	poids compétence	note compétence	note globale	
Savoir énoncer les résultats importants du cours	1				
Connaître les hypothèses d'application des résultats	1	10	5,0		
Savoir appliquer directement son cours sur un exemple simple 1					
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	3,0	10,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE				
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1				
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE				
ommuniquer à l'oral dans un langage courant, scientifique et approprié					
Rédiger proprement ses démarches au tableau	1	4	2,0		

	+	-		
ajustement			note	10

Remarques : il faut gagner en autonomie sur ce type de calcul

Exercice d'électronique :


On considère le montage suivant ; $V_4(t)$ est une tension sinusoïdale de pulsation α . L'AO est idéal et fonctionne en régime linéaire.

- 1) Déterminer la nature du filt re par une étude rapide de son comportement asymptotique.
- 2) Déterminer la fonction de transfert $\underline{H} = \frac{V_s}{V_s}$ ainsi que son module. Ce résultat est-il cohérent avec la question 1.?
- Tracer les diagrammes asymptotiques de Bode associés.

Exercice d'élec

1) On peut dessiner le circuit équivalent en HF et en BF :

En BF, l'impédance infinie de l'AO impose $v_+=v_*$ et comme l'AO est en régime linéaire, on a aussi $v_-=v_*=\frac{v_*}{2}$ ce qui impose $v_*=2v_*$ En HF, $v_+=0=v_*$ et la tension de sortie est nulle Cest un filtre de type passe bas (a priori)

Time de Type passe das (a priorty

On applique Millmon à deux reprises
$$v_F = \frac{\frac{v_E}{R} + v_s J C \omega + \frac{v_+}{R}}{\frac{2}{R} + J C \omega} = \frac{v_e + v_s J R C \omega + v_+}{2 + J R C \omega}$$

$$v_+ = v_-$$

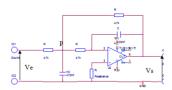
$$\frac{\frac{v_F}{R}}{\frac{R}{R} + J C \omega} = \frac{v_F}{1 + R J C \omega} = \frac{v_s}{2}$$
 Soit :
$$\frac{v_s + v_s J R C \omega + v_+}{2 + J R C \omega} = \frac{v_z}{2} (1 + R J C \omega)$$

$$v_e + v_z J R C \omega + \frac{v_z}{2} = \frac{v_z}{2} (1 + R J C \omega) (2 + J R C \omega)$$

$$v_s + v_z J R C \omega + \frac{v_z}{2} = \frac{v_z}{2} (2 + R J C \omega + (R J C \omega)^2)$$

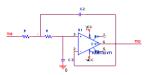
$$v_s = \frac{v_z}{2} (1 + R J C \omega + (R J C \omega)^2)$$

$$\frac{v_s}{v_s} = \frac{v_z}{2} (1 + R J C \omega + (R J C \omega)^2)$$


Nom : Marques Prénom: Mathis colle du: 04-11_24	niveau de maîtrise	poids compétence	note compétence	note globale
Savoir énoncer les résultats importants du cours	1			
Connaître les hypothèses d'application des résultats	1	10	5,0	9,0
Savoir appliquer directement son cours sur un exemple simple	1			
S'approprier : faire un schéma, identifier les grandeurs physiques et les hypothèses	NE	6	3,0	
Analyser : adapter l'écriture des relations, théorèmes ou principes à la situation proposée	NE			
Réaliser :Savoir mener les calculs analytiques, numériques, résolutions d'équations	1			
Valider : Vérifier la pertinence du résultat obtenu (critique de la valeur et de sa dimension)	NE			
communiquer à l'oral dans un langage courant, scientifique et approprié				
Rédiger proprement ses démarches au tableau	0	4	1,0	

	+	-			
ajustement				note	9
		 	-		

Remarques : cela manque d'autonomie dans les calculs qui doivent continuer à être mieux posés et effectués avec plus de précautions : idem que la dernière fois


Tous les AO sont supposés idéaux et en fonctionnement linéaires

Exercice d'électronique Donner la fonction de transfert du montage ci-dessous. Quelle fonction réalise-t-il?

Exercice d'électronique :

Obtenir la fonction de transfert puis les diagrammes de Bode de la structure ci-dessous

Exercice d'électronique

1) Donner la fonction de transfert de la structure ci-dessous

2) Montrer que cette structure introduit un déphasage réglable

Exercice d'électronique

Avec Millimon : $V_y = \frac{V_x \cdot V_y}{2^{\frac{1}{2} + \ln c\omega}} = \frac{V_x \cdot V_y}{2^{\frac{1}{2} + \ln c\omega}}$ Le montage est en fonctionnement linéaire $V_+ = V_- = 0$

Soit : $\frac{v_g}{\pi} + V_g jC\omega = 0$ et $V_g R jC\omega = -\frac{v_g + v_g}{2 + R j nC\omega}$

D'où : $V_{\epsilon}(3RjC\omega + R^2j^2nC^2\omega^2 + 1) = -V_{\epsilon}$

On obtient un filtre passe bas du second ordre :

 $\frac{V_s}{V} = \frac{-1}{1 + 3RiC\omega + R^2i^2nC^2c}$

Avec une pulsation propre $\omega_0 = \frac{1}{\sqrt{n}\pi c}$ et $M = \frac{\pi}{2\sqrt{n}}$

Exercice d'élect ronique :

 $\frac{TXS}{TXD} = \frac{1}{1 + 2RjC_z\omega + R^zj^zC_zC_z\omega^z}$

Exercice d'électronique (

D'après Millman : $\frac{\frac{V_Z}{R}}{\frac{1}{R}+jc\omega} = \frac{\frac{V_Z}{R_0} + \frac{V_Z}{R_0}}{\frac{1}{R_0}}$

Et donc : $\frac{v_g}{1+RjC\omega} = \frac{v_g+v_g}{2}$ soit $V_g(1-RjC\omega) = V_g(1+RjC\omega)$

Soit une fonction de transfert donnée par $T = \frac{1 - R/Gw}{1 + R/Gw}$

Le déphasage entre tension de sortie et d'entrée est alors donné par :

 $\phi = \text{Arg}(1 - RjC\omega) - \text{Arg}(1 + RjC\omega) = -2 \arctan\left(\frac{\omega}{\omega}\right)$

On peut donc fixer, pour une pulsation donné le déphasage ent re la sortie et l'ent rée.